Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1223730, 2023.
Article in English | MEDLINE | ID: mdl-37809093

ABSTRACT

This work examines cellular immunity against SARS-CoV-2 in patients from Córdoba, Argentina, during two major waves characterized by different circulating viral variants and different social behavior. Using flow cytometry, we evaluated the main lymphocyte populations of peripheral blood from hospitalized patients with moderate and severe COVID-19 disease. Our results show disturbances in the cellular immune compartment, as previously reported in different cohorts worldwide. We observed an increased frequency of B cells and a significant decrease in the frequency of CD3+ T cells in COVID-19 patients compared to healthy donors (HD). We also found a reduction in Tregs, which was more pronounced in severe patients. During the first wave, the frequency of GZMB, CD107a, CD39, and PD-1-expressing conventional CD4+ T (T conv) cells was significantly higher in moderate and severe patients than in HD. During the second wave, only the GZMB+ T conv cells of moderate and severe patients increased significantly. In addition, these patients showed a decreased frequency in IL-2-producing T conv cells. Interestingly, we identified two subsets of circulating CD8+ T cells with low and high CD8 surface expression in both HD and COVID-19 patients. While the percentages of CD8hi and CD8lo T cells within the CD8+ population in HD are similar, a significant increase was observed in CD8lo T cell frequency in COVID-19 patients. CD8lo T cell populations from HD as well as from SARS-CoV-2 infected patients exhibited lower frequencies of the effector cytokine-producing cells, TNF, IL-2, and IFN-γ, than CD8hi T cells. Interestingly, the frequency of CD8lo T cells increased with disease severity, suggesting that this parameter could be a potential marker for disease progression. Indeed, the CD8hi/CD8lo index helped to significantly improve the patient's clinical stratification and disease outcome prediction. Our data support the addition of, at least, a CD8hi/CD8lo index into the panel of biomarkers commonly used in clinical labs, since its determination may be a useful tool with impact on the therapeutic management of the patients.


Subject(s)
COVID-19 , Humans , CD8-Positive T-Lymphocytes , Interleukin-2/metabolism , SARS-CoV-2 , Lymphocyte Subsets , Patient Acuity
2.
Front Immunol ; 14: 1111797, 2023.
Article in English | MEDLINE | ID: mdl-36817433

ABSTRACT

Background: COVID-19 severity has been linked to an increased production of inflammatory mediators called "cytokine storm". Available data is mainly restricted to the first international outbreak and reports highly variable results. This study compares demographic and clinical features of patients with COVID-19 from Córdoba, Argentina, during the first two waves of the pandemic and analyzes association between comorbidities and disease outcome with the "cytokine storm", offering added value to the field. Methods: We investigated serum concentration of thirteen soluble mediators, including cytokines and chemokines, in hospitalized patients with moderate and severe COVID-19, without previous rheumatic and autoimmune diseases, from the central region of Argentina during the first and second infection waves. Samples from healthy controls were also assayed. Clinical and biochemical parameters were collected. Results: Comparison between the two first COVID-19 waves in Argentina highlighted that patients recruited during the second wave were younger and showed less concurrent comorbidities than those from the first outbreak. We also recognized particularities in the signatures of systemic cytokines and chemokines in patients from both infection waves. We determined that concurrent pre-existing comorbidities did not have contribution to serum concentration of systemic cytokines and chemokines in COVID-19 patients. We also identified immunological and biochemical parameters associated to inflammation which can be used as prognostic markers. Thus, IL-6 concentration, C reactive protein level and platelet count allowed to discriminate between death and discharge in patients hospitalized with severe COVID-19 only during the first but not the second wave. Conclusions: Our data provide information that deepens our understanding of COVID-19 pathogenesis linking demographic features of a COVID-19 cohort with cytokines and chemokines systemic concentration, presence of comorbidities and different disease outcomes. Altogether, our findings provide information not only at local level by delineating inflammatory/anti-inflammatory response of patients but also at international level addressing the impact of comorbidities and the infection wave in the variability of cytokine and chemokine production upon SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , Cytokines/metabolism , SARS-CoV-2/metabolism , Argentina , Chemokines , Cytokine Release Syndrome , Pandemics
3.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165592, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31678157

ABSTRACT

Damaged cells release the pro-inflammatory signal ATP, which is degraded by the ectonucleotidases CD39 and CD73 to the anti-inflammatory mediator adenosine (ADO). The balance between ATP/ADO is known to determine the outcome of inflammation/infection. However, modulation of the local immune response in different tissues due to changes in the balance of purinergic metabolites has yet to be investigated. Here, we explored the contribution of CD73-derived ADO on the acute immune response against Trypanosoma cruzi parasite, which invades and proliferates within different target tissues. Deficiency of CD73 activity led to an enhanced cardiac microbicidal immune response with an augmented frequency of macrophages with inflammatory phenotype and increased CD8+ T cell effector functions. The increment of local inducible nitric oxide (NO) synthase (iNOS)+ macrophages and the consequent rise of myocardial NO production in association with reduced ADO levels induced protection against T. cruzi infection as observed by the diminished cardiac parasite burden compared to their wild-type (WT) counterpart. Unexpectedly, parasitemia was substantially raised in CD73KO mice in comparison with WT mice, suggesting the existence of tissue reservoir/s outside myocardium. Indeed, CD73KO liver and visceral adipose tissue (VAT) showed increased parasite burden associated with a reduced ATP/ADO ratio and the lack of substantial microbicidal immune response. These data reveal that the purinergic system has a tissue-dependent impact on the host immune response against T. cruzi infection.


Subject(s)
5'-Nucleotidase/immunology , Adipose Tissue/immunology , Chagas Disease/immunology , Myocardium/immunology , Trypanosoma cruzi/immunology , Adenosine Triphosphate/immunology , Adipose Tissue/parasitology , Animals , CD8-Positive T-Lymphocytes/immunology , Carotenoids/immunology , Chagas Disease/parasitology , Disease Models, Animal , Female , Heart/parasitology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/immunology , Nitric Oxide Synthase Type II/immunology , Oxygenases/immunology
4.
Neurobiol Aging ; 64: 44-57, 2018 04.
Article in English | MEDLINE | ID: mdl-29331876

ABSTRACT

Deposition of amyloid-ß (Aß), the proteolytic product of the amyloid precursor protein (APP), might cause neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the direct involvement of APP in the mechanism of Aß-induced degeneration in AD remains on debate. Here, we analyzed the interaction of APP with heterotrimeric Go protein in primary hippocampal cultures and found that Aß deposition dramatically enhanced APP-Go protein interaction in dystrophic neurites. APP overexpression rendered neurons vulnerable to Aß toxicity by a mechanism that required Go-Gßγ complex signaling and p38-mitogen-activated protein kinase activation. Gallein, a selective pharmacological inhibitor of Gßγ complex, inhibited Aß-induced dendritic and axonal dystrophy, abnormal tau phosphorylation, synaptic loss, and neuronal cell death in hippocampal neurons expressing endogenous protein levels. In the 3xTg-AD mice, intrahippocampal application of gallein reversed memory impairment associated with early Aß pathology. Our data provide further evidence for the involvement of APP/Go protein in Aß-induced degeneration and reveal that Gßγ complex is a signaling target potentially relevant for developing therapies for halting Aß degeneration in AD.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/physiology , Brain/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/physiology , Signal Transduction/genetics , Signal Transduction/physiology , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Animals , Cells, Cultured , Cognitive Dysfunction/pathology , Cognitive Dysfunction/therapy , Disease Models, Animal , Hippocampus , Mice, Transgenic , Molecular Targeted Therapy , Multiprotein Complexes , Rats
5.
Front Immunol ; 8: 1921, 2017.
Article in English | MEDLINE | ID: mdl-29375564

ABSTRACT

Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects of different mediators could modulate the magnitude and quality of the immune response. The knowledge of the effects triggered by diverse mediators would serve to identify new therapeutic targets in different cardiovascular pathologies.

6.
J Immunol ; 197(3): 814-23, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27335499

ABSTRACT

Increasing evidence demonstrates that generation of extracellular adenosine from ATP, which is hydrolyzed by the CD39/CD73 enzyme pair, attenuates the inflammatory response and deactivates macrophage antimicrobial mechanisms. Although CD73 is emerging as a critical pathway and therapeutic target in cardiovascular disorders, the involvement of this ectonucleotidase during myocardial infection has not been explored. Using a murine model of infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy, we observed a sudden switch from the classical M1 macrophage (microbicidal) phenotype toward an alternative M2 (repairing/anti-inflammatory) phenotype that occurred within the myocardium very shortly after BALB/c mice infection. The observed shift in M1/M2 rate correlated with the cardiac cytokine milieu. Considering that parasite persistence within myocardium is a necessary and sufficient condition for the development of the chronic myocarditis, we hypothesized that CD73 activity may counteract cardiac macrophage microbicidal polarization, rendering the local immune response less effective. In fact, a transient treatment with a specific CD73 inhibitor (adenosine 5'-α,ß-methylene-diphosphate) enhanced the microbicidal M1 subset predominance, diminished IL-4- and IL-10-producing CD4(+) T cells, promoted a proinflammatory cytokine milieu, and reduced parasite load within the myocardium during the acute phase. As a direct consequence of these events, there was a reduction in serum levels of creatine kinase muscle-brain isoenzyme, a myocardial-specific injury marker, and an improvement in the electrocardiographic characteristics during the chronic phase. Our results demonstrate that this purinergic system drives the myocardial immune response postinfection and harbors a promising potential as a therapeutic target.


Subject(s)
5'-Nucleotidase/antagonists & inhibitors , Chagas Cardiomyopathy/immunology , Macrophages/immunology , Animals , Blotting, Western , Cell Differentiation/immunology , Chagas Cardiomyopathy/pathology , Disease Models, Animal , Female , Flow Cytometry , Heart/microbiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myocardium/immunology , Myocardium/pathology , Phenotype , Real-Time Polymerase Chain Reaction
7.
Antimicrob Agents Chemother ; 60(6): 3700-8, 2016 06.
Article in English | MEDLINE | ID: mdl-27067322

ABSTRACT

Chagas disease is an important public health problem in Latin America, and its treatment by chemotherapy with benznidazole (BZ) or nifurtimox remains unsatisfactory. In order to design new alternative strategies to improve the current etiological treatments, in the present work, we comprehensively evaluated the in vitro and in vivo anti-Trypanosoma cruzi effects of clomipramine (CMP) (a parasite-trypanothione reductase-specific inhibitor) combined with BZ. In vitro studies, carried out using a checkerboard technique on trypomastigotes (T. cruzi strain Tulahuen), revealed a combination index (CI) of 0.375, indicative of a synergistic effect of the drug combination. This result was correlated with the data obtained in infected BALB/c mice. We observed that during the acute phase (15 days postinfection [dpi]), BZ at 25 mg/kg of body weight/day alone decreased the levels of parasitemia compared with those of the control group, but when BZ was administered with CMP, the drug combination completely suppressed the parasitemia due to the observed synergistic effect. Furthermore, in the chronic phase (90 dpi), mice treated with both drugs showed less heart damage as assessed by the histopathological analysis, index of myocardial inflammation, and levels of heart injury biochemical markers than mice treated with BZ alone at the reference dose (100 mg/kg/day). Collectively, these data support the notion that CMP combined with low doses of BZ diminishes cardiac damage and inflammation during the chronic phase of cardiomyopathy. The synergistic activity of BZ-CMP clearly suggests a potential drug combination for Chagas disease treatment, which would allow a reduction of the effective dose of BZ and an increase in therapeutic safety.


Subject(s)
Chagas Disease/drug therapy , Clomipramine/pharmacology , Nitroimidazoles/pharmacology , Parasitemia/drug therapy , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Chagas Disease/parasitology , Disease Models, Animal , Drug Administration Schedule , Drug Combinations , Drug Synergism , Heart/drug effects , Heart/physiopathology , Male , Mice , Mice, Inbred BALB C , Parasitemia/parasitology , Parasitic Sensitivity Tests , Treatment Outcome , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/pathogenicity
8.
Front Immunol ; 7: 626, 2016.
Article in English | MEDLINE | ID: mdl-28066435

ABSTRACT

Reactive oxygen and nitrogen species are important microbicidal agents and are also involved in lymphocyte unresponsiveness during experimental infections. Many of the biological effects attributed to nitric oxide are mediated by peroxynitrites, which induce the nitration of immune cells, among others. Our group has demonstrated that nitric oxide is involved in the suppressive activity of myeloid-derived suppressor cells in Trypanosoma cruzi-infected mice, with a higher number of CD8+ T cells suffering surface-nitration compared to uninfected controls. Studying the functional and phenotypic features of peripheral CD8+ T cells from chagasic patients and human cells experimentally infected with T. cruzi, we found that different regulatory mechanisms impaired the effector functions of T cytotoxic population from seropositive patients. Peripheral leukocytes from chagasic patients showed increased nitric oxide production concomitant with increased tyrosine nitration of CD8+ T cells. Additionally, this cytotoxic population exhibited increased apoptotic rate, loss of the TCRζ-chain, and lower levels of CD107a, a marker of degranulation. Strikingly, IL-6 stimulation of in vitro-infected peripheral blood mononuclear cells obtained from healthy donors, blunted T. cruzi-induced nitration of CD3+CD8+ cells, and increased their survival. Furthermore, the treatment of these cultures with an IL-6 neutralizing antibody increased the percentage of T. cruzi-induced CD8+ T cell nitration and raised the release of nitric oxide. The results suggest that the under-responsiveness of cytotoxic T cell population observed in the setting of long-term constant activation of the immune system could be reverted by the pleiotropic actions of IL-6, since this cytokine improves its survival and effector functions.

9.
Biochim Biophys Acta ; 1832(3): 485-94, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23253440

ABSTRACT

Interleukin-6 mediates host defense and cell survival mainly through the activation of the transcription factor STAT3 via the glycoprotein gp130, a shared signal-transducing receptor for several IL-6-type cytokines. We have reported that the cardiotrophic parasite Trypanosoma cruzi protects murine cardiomyocytes from apoptosis. In agreement, an intense induction of the anti-apoptotic factor Bcl-2 is found in cardiac fibers during the acute phase of infection, establishing a higher threshold against apoptosis. We report here that inactive cruzipain, the main cysteine protease secreted by the parasite, specifically triggered TLR2 and the subsequent release of IL-6, which acted as an essential anti-apoptotic factor for cardiomyocyte cultures. Although comparable IL-6 levels were found under active cruzipain stimulation, starved cardiac cell monolayers could not be rescued from apoptosis. Moreover, cardiomyocytes treated with active cruzipain completely abrogated the STAT3 phosphorylation and nuclear translocation induced by recombinant IL-6. This inhibition was also observed on splenocytes, but it was reverted when the enzyme was complexed with chagasin, a parasite cysteine protease inhibitor. Furthermore, the inhibition of IL-6-induced p-STAT3 was evidenced in spleen cells stimulated with pre-activated supernatants derived from trypomastigotes. To account for these observations, we found that cruzipain enzymatically cleaved recombinant gp130 ectodomain, and induced the release of membrane-distal N-terminal domain of this receptor on human peripheral blood mononuclear cells. These results demonstrate, for the first time, that the parasite may modify the IL-6-induced response through the modulation of its cysteine protease activity, suggesting that specific inhibitors may help to improve the immune cell activation and cardioprotective effects.


Subject(s)
Cysteine Endopeptidases/pharmacology , Cytokine Receptor gp130/metabolism , Interleukin-6/pharmacology , STAT3 Transcription Factor/metabolism , Animals , Animals, Newborn , Apoptosis/drug effects , Blotting, Western , Cell Survival/drug effects , Cells, Cultured , Chagas Disease/parasitology , Cysteine Endopeptidases/metabolism , Host-Parasite Interactions , Humans , Interleukin-6/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , Phosphorylation/drug effects , Protozoan Proteins/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/physiology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Trypanosoma cruzi/metabolism , Trypanosoma cruzi/physiology
10.
Med Microbiol Immunol ; 201(2): 145-55, 2012 May.
Article in English | MEDLINE | ID: mdl-21984337

ABSTRACT

Local innate immunity plays a key role in initiating and coordinating homeostatic and defense responses in the heart. We have previously reported that the cardiotropic parasite Trypanosoma cruzi, the etiological agent of Chagas disease, protects cardiomyocytes against growth factor deprivation-induced apoptosis. In this study, we investigated cardiomyocyte innate immune response to T. cruzi infection and its role in cellular protection from apoptosis. We found that Toll-like receptor (TLR) 2-expressing cells were strongly increased by the parasite in BALB/c neonatal mouse cardiomyocyte cultures. Using a dominant-negative system, we showed that TLR2 mediated cardiomyocyte survival and the secretion of interleukin (IL) 6, which acted as an essential anti-apoptotic factor. Moreover, IL6 released by infected cells, as well as the recombinant bioactive cytokine, induced the phosphorylation of the signal transducers and activators of transcription-3 (STAT3) in cultured cardiomyocytes. In accord with the in vitro results, during the acute phase of the infection, TLR2 expression increased 2.9-fold and the anti-apoptotic factor Bcl-2 increased 4.5-fold in the cardiac tissue. We have clearly shown a cross-talk between the intrinsic innate response of cardiomyocytes and the pro-survival effect evoked by the parasite.


Subject(s)
Apoptosis , Chagas Disease/immunology , Interleukin-6/immunology , Myocytes, Cardiac/immunology , Toll-Like Receptor 2/immunology , Trypanosoma cruzi/immunology , Trypanosoma cruzi/pathogenicity , Animals , Chagas Disease/pathology , Disease Models, Animal , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...