Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Res Int ; 2016: 2053459, 2016.
Article in English | MEDLINE | ID: mdl-27635261

ABSTRACT

Neuromuscular preparations exposed to B. marajoensis venom show increases in the frequency of miniature end-plate potentials and twitch tension facilitation followed by presynaptic neuromuscular paralysis, without evidences of muscle damage. Considering that presynaptic toxins interfere into the machinery involved in neurotransmitter release (synaptophysin, synaptobrevin, and SNAP25 proteins), the main objective of this communication is to analyze, by immunofluorescence and western blotting, the expression of the synaptic proteins, synaptophysin, synaptobrevin, and SNAP25 and by myography, light, and transmission electron microscopy the pathology of motor nerve terminals and skeletal muscle fibres of chick biventer cervicis preparations (CBC) exposed in vitro to BmjeTX-I and BmjeTX-II toxins from B. marajoensis venom. CBC incubated with toxins showed irreversible twitch tension blockade and unaffected KCl- and ACh-evoked contractures, and the positive colabelling of acetylcholine receptors confirmed that their action was primarily at the motor nerve terminal. Hypercontraction and loose myofilaments and synaptic vesicle depletion and motor nerve damage indicated that the toxins displayed both myotoxic and neurotoxic effect. The blockade resulted from interference on synaptophysin, synaptobrevin, and SNAP25 proteins leading to the conclusion that BmjeTX-I and BmjeTX-II affected neurotransmitter release machinery by preventing the docking of synaptic vesicles to the axolemma of the nerve terminal.

2.
Toxicon ; 86: 89-95, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24878372

ABSTRACT

Basic phospholipases A2 (PLA2) are toxic and induce a wide spectrum of pharmacological effects, although the acidic enzyme types are not lethal or cause low lethality. Therefore, it is challenging to elucidate the mechanism of action of acidic phospholipases. This study used the acidic non-toxic Ba SpII RP4 PLA2 from Bothrops alternatus as an antigen to develop anti-PLA2 IgG antibodies in rabbits and used in vivo assays to examine the changes in crude venom when pre-incubated with these antibodies. Using Ouchterlony and western blot analyses on B. alternatus venom, we examined the specificity and sensitivity of phospholipase A2 recognition by the specific antibodies (anti-PLA2 IgG). Neutralisation assays using a non-toxic PLA2 antigen revealed unexpected results. The (indirect) haemolytic activity of whole venom was completely inhibited, and all catalytically active phospholipases A2 were blocked. Myotoxicity and lethality were reduced when the crude venom was pre-incubated with anti-PLA2 immunoglobulins. CK levels in the skeletal muscle were significantly reduced at 6 h, and the muscular damage was more significant at this time-point compared to 3 and 12 h. When four times the LD50 was used (224 µg), half the animals treated with the venom-anti PLA2 IgG mixture survived after 48 h. All assays performed with the specific antibodies revealed that Ba SpII RP4 PLA2 had a synergistic effect on whole-venom toxicity. IgG antibodies against the venom of the Argentinean species B. alternatus represent a valuable tool for elucidation of the roles of acidic PLA2 that appear to have purely digestive roles and for further studies on immunotherapy and snake envenoming in affected areas in Argentina and Brazil.


Subject(s)
Antibodies, Anti-Idiotypic/biosynthesis , Antivenins/chemistry , Crotalid Venoms/antagonists & inhibitors , Immunoglobulin G/biosynthesis , Phospholipase A2 Inhibitors/chemistry , Phospholipases A2/chemistry , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/isolation & purification , Antibody Specificity , Bothrops , Crotalid Venoms/immunology , Immunoglobulin G/isolation & purification , Male , Mice , Neutralization Tests , Rabbits
3.
Toxicon ; 59(2): 338-43, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22133569

ABSTRACT

Acute muscle damage, myonecrosis, is one of the main characteristics of envenoming by Bothrops genus. In this in vitro study we investigated the role of a metalloproteinase (baltergin) and an acidic phospholipase A2 (Ba SPII RP4) in the cytotoxicity exhibited by Bothrops alternatus venom. Baltergin metalloproteinase purified from the venom exerted a toxic effect on C2C12 myoblast cells (CC50: 583.34 µg/mL) which involved morphological alterations compatible with apoptosis/anoikis. On the contrary, the most abundant PLA2 isolated from this venom did not exhibit cytotoxicity at times and doses tested. However, when myoblasts were treated with both enzymes together, synergic activity was demonstrated. Neutralization of the venom with specific antibodies (IgG anti-baltergin and IgG anti-PLA2) confirmed this synergism.


Subject(s)
Bothrops/metabolism , Crotalid Venoms/enzymology , Crotalid Venoms/pharmacology , Metalloproteases/pharmacology , Phospholipases A2/pharmacology , Animals , Antibodies, Monoclonal/blood , Cell Line , Drug Synergism , Mice , Mice, Inbred C3H , Muscle, Skeletal/drug effects , Muscular Diseases/chemically induced , Muscular Diseases/pathology , Rabbits
4.
Toxicon ; 56(1): 64-74, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20331996

ABSTRACT

An acidic protein with phospholipase A(2) activity was purified to homogeneity from the venom of the Northeast Argentinian viperid Bothrops alternatus by two chromatographic steps: a conventional gel filtration on Sephadex G-75 and reversed phase on C18 HPLC column. A molecular mass of 14185.48 Da was determined by mass spectrometry, displaying a homodimer conformation. The kinetic assay demonstrated a catalytically active phospholipase A(2) in correspondence with Asp49 PLA(2) group. The enzyme designated Ba SpII RP4 contains an amino acid composition of 121 residues and a calculated theoretical pI value of 4.88. Amino acid sequence alignments with other Bothrops PLA(2) revealed a high degree of homology sequence (90-56%). Ba SpII RP4 did not show myotoxic activity upon muscular fibers at doses up to 100 microg i.m. route injection or lethal response when it was i.p. injected at the hightest dose of 200 microg. This toxin generates slight biological activities like paw edema inflammation and a delay in the clotting time, although Ba SpII RP4 exhibited catalytic activity. The primary amino acid sequence, determined a quadruple-time of flight (Q-TOF) hybrid mass spectrometer Q-TOF Ultima from Micromass (Manchester, UK) equipped with a nano Zspray source operating in a positive ion mode and tandem mass spectrum, an ESI/MS mass spectrum (TOF MS mode) "de novo amino acid sequencing", also provides more database about the small group of the non-myotoxic PLA(2)s isolated up to the present.


Subject(s)
Anticoagulants , Bothrops , Crotalid Venoms/enzymology , Group III Phospholipases A2 , Hemolytic Agents , Reptilian Proteins , Alkylation , Amino Acid Sequence , Animals , Anticoagulants/chemistry , Anticoagulants/isolation & purification , Anticoagulants/metabolism , Anticoagulants/toxicity , Argentina , Creatine Kinase/blood , Edema/chemically induced , Group III Phospholipases A2/chemistry , Group III Phospholipases A2/isolation & purification , Group III Phospholipases A2/metabolism , Group III Phospholipases A2/toxicity , Hemolytic Agents/chemistry , Hemolytic Agents/isolation & purification , Hemolytic Agents/metabolism , Hemolytic Agents/toxicity , Hydrogen-Ion Concentration , Kinetics , Lethal Dose 50 , Mice , Molecular Sequence Data , Molecular Weight , Muscles/drug effects , Muscles/pathology , Oxidation-Reduction , Peptide Fragments/chemistry , Peptide Fragments/isolation & purification , Protein Multimerization , Reptilian Proteins/chemistry , Reptilian Proteins/isolation & purification , Reptilian Proteins/metabolism , Reptilian Proteins/toxicity , Sequence Alignment , Sequence Homology, Amino Acid
5.
Toxicon ; 49(5): 678-92, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17208264

ABSTRACT

Human envenoming by Lachesis muta muta venom, although infrequent, is rather severe, being characterized by pronounced local tissue damage and systemic dysfunctions. Studies on the pharmacological actions of L. m. muta venom are relatively scant and the direct actions of the crude venom and its purified phospholipase A(2) (PLA(2)) have not been addressed using in vitro models. In this work, we investigated the cytotoxicity of L. m. muta venom and its purified PLA(2) isoform LmTX-I in cultured Madin-Darby canine kidney (MDCK) and in a skeletal muscle (C2C12) cell lines. As revealed by neutral red dye uptake assay, the crude venom (10 or 100 microg/ml) induced a significant decrease in cell viability of MDCK cells. LmTX-I at the concentrations tested (70-270 microg/ml or 5-20 microM) displayed no cytotoxicity in both MDCK and C2C12 cell lines. Morphometric analysis of Feulgen nuclear reaction revealed a significant increase in chromatin condensation (pyknosis), apparent reduction in the number of mitotic nuclei and nuclear fragmentation of some MDCK cells after incubation with L. m. muta venom. Monolayer exposure to crude venom resulted in morphological changes as assessed by scanning electron microscopy. The staining with TRITC-labelled phalloidin showed a marked disarray of the actin stress fiber following L. m. muta venom exposure. In contrast, LmTX-I had no effect on nucleus and cell morphologies as well as on stress fiber organization. These results indicate that L. m. muta venom exerts toxic effects on cultured MDCK cells. The LmTX-I probably does not contribute per se to the direct venom cytotoxicity, these effects are mediated by metalloproteinases/disintegrins and other components of the venom.


Subject(s)
Crotalid Venoms/toxicity , Phospholipases A/toxicity , Viperidae , Animals , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/ultrastructure , Cell Survival/drug effects , Chromatin/drug effects , Chromatin/ultrastructure , Dogs , Microscopy, Electron, Scanning , Phospholipases A2 , Toxicity Tests
6.
Biochim Biophys Acta ; 1726(1): 75-86, 2005 Oct 30.
Article in English | MEDLINE | ID: mdl-16005152

ABSTRACT

Two basic phospholipase A2 (PLA2) isoforms were isolated from Lachesis muta muta snake venom and partially characterized. The venom was fractionated by molecular exclusion chromatography in ammonium bicarbonate buffer followed by reverse-phase HPLC on a C-18 mu-Bondapack column and RP-HPLC on a C-8 column. From liquid chromatography-electrospray ionization/mass spectrometry, the molecular mass of the two isoforms LmTX-I and LmTX-II was respectively measured as 14,245.4 and 14,186.2 Da. The pI was respectively estimated to be 8.7 and 8.6 for LmTX-I and LmTX-II, as determined by two-dimensional electrophoresis. The two proteins were sequenced and differentiated from each other by a single amino acid substitution, Arg65 (LmTX-I)-->Pro65 (LmTX-II). The amino acid sequence showed a high degree of homology between PLA2 isoforms from Lachesis muta muta and other PLA2 snake venoms. LmTX-I and LmTX-II had PLA2 activity in the presence of a synthetic substrate and showed a minimum sigmoidal behaviour; with maximal activity at pH 8.0 and 35-45 degrees C. Full PLA2 activity required Ca2+ and was respectively inhibited by Cu2+ and Zn2+ in the presence and absence of Ca2+. Crotapotin from Crotalus durissus cascavella rattlesnake venom significantly inhibited (P<0.05) the enzymatic activity of LmTX-I, suggesting that the binding site for crotapotin in this PLA2 was similar to another in the basic PLA2 of the crotoxin complex from C. durissus cascavella venom.


Subject(s)
Crotalid Venoms/enzymology , Phospholipases A/chemistry , Phospholipases A/isolation & purification , Viperidae , Amino Acid Sequence , Animals , Base Sequence , Chemical Fractionation , Chromatography, Gel , Chromatography, High Pressure Liquid , Crotoxin/metabolism , Electrophoresis, Gel, Two-Dimensional , Mass Spectrometry , Metals, Heavy/metabolism , Molecular Sequence Data , Phospholipases A/genetics , Phospholipases A/metabolism , Phospholipases A2 , Sequence Analysis, DNA
7.
Phytochemistry ; 66(9): 1017-25, 2005 May.
Article in English | MEDLINE | ID: mdl-15896371

ABSTRACT

Phospholipases A(2) (PLA(2)) are important constituents of snake venoms, being responsible for several of their toxic actions. Extracts from plants used in folk medicine were screened for inhibition of the enzymatic activity of myotoxin I, a PLA(2) from Bothrops asper. Piper umbellatum and Piper peltatum extracts tested positive, and their fractionation resulted in the isolation of 4-nerolidylcatechol. Its inhibitory effects towards toxic activities of two Bothrops myotoxins, representing catalytically active (Asp49) and catalytically inactive (Lys49) types of group II PLA(2)s, respectively, were characterized. The enzyme activity of B. asper myotoxin I was completely inhibited by 4-nerolidylcatechol at an inhibitor:toxin ratio of 10:1 (wt/wt) with an IC50 of approximately 1mM. In addition, 4-nerolidylcatechol inhibited representatives of groups I and III of PLA(2)s. Its preincubation with Bothrops myotoxins significantly reduced their myotoxic and edema-inducing activities in animal experiments. However, when 4-nerolidylcatechol was administered in situ, immediately after toxin injection, its inhibitory ability was substantially lower or negligible. This might be explained by the rapid action of these toxins in vivo, together with the slow inactivation of PLA(2) activity observed in vitro. Electrophoretic and chromatographic analyses of myotoxins ruled out major changes in protein charge, hydrophobicity, or gross molecular mass being involved in the inhibition mechanism. Mass spectrometry determinations are consistent with the covalent modification of myotoxin by one molecule of 4-nerolidylcatechol. Finally, a novel compound was isolated from both Piper species, sharing the nerolidyl skeleton, but nevertheless not being inhibitory towards the PLA(2)s studied.


Subject(s)
Catechols/pharmacology , Crotalid Venoms/antagonists & inhibitors , Neurotoxins/antagonists & inhibitors , Phospholipases A/antagonists & inhibitors , Piper/chemistry , Animals , Bothrops , Catechols/chemistry , Crotalid Venoms/enzymology , Edema/chemically induced , Edema/prevention & control , Group II Phospholipases A2 , Mice , Molecular Structure , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Reptilian Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...