Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 48(4): 1969-1984, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31863585

ABSTRACT

One of the key roles of the 12-subunit eukaryotic translation initiation factor 3 (eIF3) is to promote the formation of the 43S and 48S pre-initiation complexes (PICs). However, particular contributions of its individual subunits to these two critical initiation reactions remained obscure. Here, we adapted formaldehyde gradient cross-linking protocol to translation studies and investigated the efficiency of the 43S and 48S PIC assembly in knockdowns of individual subunits of human eIF3 known to produce various partial subcomplexes. We revealed that eIF3d constitutes an important intermolecular bridge between eIF3 and the 40S subunit as its elimination from the eIF3 holocomplex severely compromised the 43S PIC assembly. Similarly, subunits eIF3a, c and e were found to represent an important binding force driving eIF3 binding to the 40S subunit. In addition, we demonstrated that eIF3c, and eIF3k and l subunits alter the efficiency of mRNA recruitment to 43S PICs in an opposite manner. Whereas the eIF3c knockdown reduces it, downregulation of eIF3k or eIF3l increases mRNA recruitment, suggesting that the latter subunits possess a regulatory potential. Altogether this study provides new insights into the role of human eIF3 in the initial assembly steps of the translational machinery.


Subject(s)
Eukaryotic Initiation Factor-3/genetics , Microtubule-Associated Proteins/genetics , Ribosomes/genetics , Cross-Linking Reagents/pharmacology , Formaldehyde/pharmacology , Humans , Protein Binding , Protein Biosynthesis/genetics , RNA, Messenger/genetics , Ribosome Subunits, Small, Eukaryotic/genetics
2.
Nucleic Acids Res ; 47(21): 11326-11343, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31642471

ABSTRACT

Ribosome was long considered as a critical yet passive player in protein synthesis. Only recently the role of its basic components, ribosomal RNAs and proteins, in translational control has begun to emerge. Here we examined function of the small ribosomal protein uS3/Rps3, earlier shown to interact with eukaryotic translation initiation factor eIF3, in termination. We identified two residues in consecutive helices occurring in the mRNA entry pore, whose mutations to the opposite charge either reduced (K108E) or increased (R116D) stop codon readthrough. Whereas the latter increased overall levels of eIF3-containing terminating ribosomes in heavy polysomes in vivo indicating slower termination rates, the former specifically reduced eIF3 amounts in termination complexes. Combining these two mutations with the readthrough-reducing mutations at the extreme C-terminus of the a/Tif32 subunit of eIF3 either suppressed (R116D) or exacerbated (K108E) the readthrough phenotypes, and partially corrected or exacerbated the defects in the composition of termination complexes. In addition, we found that K108 affects efficiency of termination in the termination context-specific manner by promoting incorporation of readthrough-inducing tRNAs. Together with the multiple binding sites that we identified between these two proteins, we suggest that Rps3 and eIF3 closely co-operate to control translation termination and stop codon readthrough.


Subject(s)
Codon, Terminator/metabolism , Eukaryotic Initiation Factor-3/metabolism , Peptide Chain Termination, Translational , Ribosomal Proteins/physiology , Saccharomyces cerevisiae Proteins/physiology , Binding Sites/genetics , Eukaryotic Initiation Factor-3/genetics , Organisms, Genetically Modified , Peptide Chain Termination, Translational/genetics , Protein Binding , Protein Biosynthesis/genetics , RNA, Transfer/metabolism , Ribosomal Proteins/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
3.
RNA Biol ; 14(12): 1660-1667, 2017 12 02.
Article in English | MEDLINE | ID: mdl-28745933

ABSTRACT

Reinitiation after translation of short upstream ORFs (uORFs) represents one of the means of regulation of gene expression on the mRNA-specific level in response to changing environmental conditions. Over the years it has been shown-mainly in budding yeast-that its efficiency depends on cis-acting features occurring in sequences flanking reinitiation-permissive uORFs, the nature of their coding sequences, as well as protein factors acting in trans. We earlier demonstrated that the first two uORFs from the reinitiation-regulated yeast GCN4 mRNA leader carry specific structural elements in their 5' sequences that interact with the translation initiation factor eIF3 to prevent full ribosomal recycling post their translation. Actually, this interaction turned out to be instrumental in stabilizing the mRNA·40S post-termination complex, which is thus capable to eventually resume scanning and reinitiate on the next AUG start site downstream. Recently, we also provided important in vivo evidence strongly supporting the long-standing idea that to stimulate reinitiation, eIF3 has to remain bound to ribosomes elongating these uORFs until their stop codon has been reached. Here we examined the importance of eIF3 and sequences flanking uORF1 of the human functional homolog of yeast GCN4, ATF4, in stimulation of efficient reinitiation. We revealed that the molecular basis of the reinitiation mechanism is conserved between yeasts and humans.


Subject(s)
Eukaryotic Initiation Factor-3/metabolism , Open Reading Frames , Peptide Chain Initiation, Translational , Activating Transcription Factor 4/chemistry , Activating Transcription Factor 4/metabolism , Animals , Eukaryotic Initiation Factor-3/chemistry , Humans , Mammals , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism
4.
Chem Biol Drug Des ; 83(4): 418-26, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24168419

ABSTRACT

In hemolymph of insect species, compounds with remarkable properties for pharmaceutical industry are present. At the first line, there were found compounds of low molecular mass, less than 1 kDa. One of such compounds, ß-alanyl-tyrosine (252 Da), was isolated from larval hemolymph of some species of holometabolous insects (e.g. Neobellieria bullata). Its paralytic activity and antimicrobial properties were described until now. In this study, we present the effect of elongation of ß-alanyl-tyrosine by repeating of this motive on the biological and physical properties of prepared analogues. For assessment of antimicrobial properties of these new compounds strains of Gram-positive, Gram-negative bacteria and fungi were used, we also followed the haemolytic activity and toxic effect on human cell culture HepG2. On the base of ECD spectroscopy measurement, subsequent molecular modelling and known secondary structure of original ß-alanyl-tyrosine dipeptide, the secondary structures of repeating sequences of ß-AY were specified. The repeating structures of ß-alanyl-tyrosine show increase in antimicrobial activity; for Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, minimal inhibitory concentration was decreased from 30 to 15 mM for 2xß-AY, 0.4 mM for 4xß-AY and 0.25 mM for 6xß-AY.


Subject(s)
Dipeptides/chemistry , Dipeptides/pharmacology , Fungi/drug effects , Staphylococcus aureus/drug effects , Toxins, Biological/chemistry , Amino Acid Motifs , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cell Proliferation/drug effects , Hep G2 Cells , Humans , Microbial Sensitivity Tests , Toxins, Biological/pharmacology
5.
Angew Chem Int Ed Engl ; 52(51): 13760-3, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24307504

ABSTRACT

CA inhibitors: Human carbonic anhydrases (CAs) are diagnostic and therapeutic targets. Various carborane cages are shown to act as active-site-directed inhibitors, and substitution with a sulfamide group and other substituents leads to compounds with high selectivity towards the cancer-specific isozyme IX. Crystal structures of the carboranes in the active site provide information that can be applied to the structure-based design of specific inhibitors.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Drug Design , Drug Discovery , Humans , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...