Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 4(10): e1000208, 2008 Oct 03.
Article in English | MEDLINE | ID: mdl-18833303

ABSTRACT

In bacterial, yeast, and human cells, stress-induced mutation mechanisms are induced in growth-limiting environments and produce non-adaptive and adaptive mutations. These mechanisms may accelerate evolution specifically when cells are maladapted to their environments, i.e., when they are are stressed. One mechanism of stress-induced mutagenesis in Escherichia coli occurs by error-prone DNA double-strand break (DSB) repair. This mechanism was linked previously to a differentiated subpopulation of cells with a transiently elevated mutation rate, a hypermutable cell subpopulation (HMS). The HMS could be important, producing essentially all stress-induced mutants. Alternatively, the HMS was proposed to produce only a minority of stress-induced mutants, i.e., it was proposed to be peripheral. We characterize three aspects of the HMS. First, using improved mutation-detection methods, we estimate the number of mutations per genome of HMS-derived cells and find that it is compatible with fitness after the HMS state. This implies that these mutants are not necessarily an evolutionary dead end, and could contribute to adaptive evolution. Second, we show that stress-induced Lac(+) mutants, with and without evidence of descent from the HMS, have similar Lac(+) mutation sequences. This provides evidence that HMS-descended and most stress-induced mutants form via a common mechanism. Third, mutation-stimulating DSBs introduced via I-SceI endonuclease in vivo do not promote Lac(+) mutation independently of the HMS. This and the previous finding support the hypothesis that the HMS underlies most stress-induced mutants, not just a minority of them, i.e., it is important. We consider a model in which HMS differentiation is controlled by stress responses. Differentiation of an HMS potentially limits the risks of mutagenesis in cell clones.


Subject(s)
Escherichia coli/genetics , Mutagenesis , Mutation , DNA Breaks, Double-Stranded , Escherichia coli/physiology , Evolution, Molecular , Genome, Bacterial , Lac Operon
2.
Mol Cell ; 19(6): 791-804, 2005 Sep 16.
Article in English | MEDLINE | ID: mdl-16168374

ABSTRACT

Special mechanisms of mutation are induced in microbes under growth-limiting stress causing genetic instability, including occasional adaptive mutations that may speed evolution. Both the mutation mechanisms and their control by stress have remained elusive. We provide evidence that the molecular basis for stress-induced mutagenesis in an E. coli model is error-prone DNA double-strand break repair (DSBR). I-SceI-endonuclease-induced DSBs strongly activate stress-induced mutations near the DSB, but not globally. The same proteins are required as for cells without induced DSBs: DSBR proteins, DinB-error-prone polymerase, and the RpoS starvation-stress-response regulator. Mutation is promoted by homology between cut and uncut DNA molecules, supporting a homology-mediated DSBR mechanism. DSBs also promote gene amplification. Finally, DSBs activate mutation only during stationary phase/starvation but will during exponential growth if RpoS is expressed. Our findings reveal an RpoS-controlled switch from high-fidelity to mutagenic DSBR under stress. This limits genetic instability both in time and to localized genome regions, potentially important evolutionary strategies.


Subject(s)
DNA Damage , DNA Repair , Point Mutation , Base Sequence , DNA Helicases/genetics , DNA Helicases/metabolism , Deoxyribonucleases, Type II Site-Specific/genetics , Deoxyribonucleases, Type II Site-Specific/metabolism , Escherichia coli/genetics , Escherichia coli Proteins , Evolution, Molecular , Lac Operon , Molecular Sequence Data , Mutagenesis , Saccharomyces cerevisiae Proteins
3.
Res Microbiol ; 155(5): 352-9, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15207867

ABSTRACT

The neo-Darwinists suggested that evolution is constant and gradual, and thus that genetic changes that drive evolution should be too. However, more recent understanding of phenomena called adaptive mutation in microbes indicates that mutation rates can be elevated in response to stress, producing beneficial and other mutations. We review evidence that, in Escherichia coli, two separate mechanisms of stress-induced genetic change occur that revert a lac frameshift allele allowing growth on lactose medium. First, compensatory frameshift ("point") mutations occur by a mechanism that includes DNA double-strand breaks and (we have suggested) their error-prone repair. Point mutation requires induction of the RpoS-dependent general stress response, and the SOS DNA damage response leading to upregulation of the error-prone DNA polymerase DinB (Pol IV), and occurs during a transient limitation of post-replicative mismatch repair activity. A second mechanism, adaptive amplification, entails amplification of the leaky lac allele to 20-50 tandem repeats. These provide sufficient beta-galactosidase activity for growth, thereby apparently deflecting cells from the point mutation pathway. Unlike point mutation, amplification neither occurs in hypermutating cells nor requires SOS or DinB, but like point mutation, amplification requires the RpoS-dependent stress response. Similar processes are being found in other bacterial systems and yeast. Stress-induced genetic changes may underlie much of microbial evolution, pathogenesis and antibiotic resistance, and also cancer formation, progression and drug resistance.


Subject(s)
Adaptation, Biological/genetics , Escherichia coli/genetics , Gene Amplification , Lac Operon/genetics , Mutation , DNA Repair/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Evolution, Molecular , F Factor/genetics , Models, Genetic , Mutagenesis , Plasmids/genetics , Recombination, Genetic , SOS Response, Genetics/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...