Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Genetics ; 224(1)2023 05 04.
Article in English | MEDLINE | ID: mdl-36755307

ABSTRACT

Xenbase (https://www.xenbase.org/), the Xenopus model organism knowledgebase, is a web-accessible resource that integrates the diverse genomic and biological data from research on the laboratory frogs Xenopus laevis and Xenopus tropicalis. The goal of Xenbase is to accelerate discovery and empower Xenopus research, to enhance the impact of Xenopus research data, and to facilitate the dissemination of these data. Xenbase also enhances the value of Xenopus data through high-quality curation, data integration, providing bioinformatics tools optimized for Xenopus experiments, and linking Xenopus data to human data, and other model organisms. Xenbase also plays an indispensable role in making Xenopus data interoperable and accessible to the broader biomedical community in accordance with FAIR principles. Xenbase provides annotated data updates to organizations such as NCBI, UniProtKB, Ensembl, the Gene Ontology consortium, and most recently, the Alliance of Genomic Resources, a common clearing house for data from humans and model organisms. This article provides a brief overview of key and recently added features of Xenbase. New features include processing of Xenopus high-throughput sequencing data from the NCBI Gene Expression Omnibus; curation of anatomical, physiological, and expression phenotypes with the newly created Xenopus Phenotype Ontology; Xenopus Gene Ontology annotations; new anatomical drawings of the Normal Table of Xenopus development; and integration of the latest Xenopus laevis v10.1 genome annotations. Finally, we highlight areas for future development at Xenbase as we continue to support the Xenopus research community.


Subject(s)
Databases, Genetic , Genomics , Animals , Humans , Xenopus laevis/genetics , Xenopus/genetics , Computational Biology
2.
Development ; 149(14)2022 07 15.
Article in English | MEDLINE | ID: mdl-35833709

ABSTRACT

Normal tables of development are essential for studies of embryogenesis, serving as an important resource for model organisms, including the frog Xenopus laevis. Xenopus has long been used to study developmental and cell biology, and is an increasingly important model for human birth defects and disease, genomics, proteomics and toxicology. Scientists utilize Nieuwkoop and Faber's classic 'Normal Table of Xenopus laevis (Daudin)' and accompanying illustrations to enable experimental reproducibility and reuse the illustrations in new publications and teaching. However, it is no longer possible to obtain permission for these copyrighted illustrations. We present 133 new, high-quality illustrations of X. laevis development from fertilization to metamorphosis, with additional views that were not available in the original collection. All the images are available on Xenbase, the Xenopus knowledgebase (http://www.xenbase.org/entry/zahn.do), for download and reuse under an attributable, non-commercial creative commons license. Additionally, we have compiled a 'Landmarks Table' of key morphological features and marker gene expression that can be used to distinguish stages quickly and reliably (https://www.xenbase.org/entry/landmarks-table.do). This new open-access resource will facilitate Xenopus research and teaching in the decades to come.


Subject(s)
Databases, Genetic , Genomics , Animals , Humans , Metamorphosis, Biological , Reproducibility of Results , Xenopus laevis/genetics
3.
BMC Bioinformatics ; 23(1): 99, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35317743

ABSTRACT

BACKGROUND: Ontologies of precisely defined, controlled vocabularies are essential to curate the results of biological experiments such that the data are machine searchable, can be computationally analyzed, and are interoperable across the biomedical research continuum. There is also an increasing need for methods to interrelate phenotypic data easily and accurately from experiments in animal models with human development and disease. RESULTS: Here we present the Xenopus phenotype ontology (XPO) to annotate phenotypic data from experiments in Xenopus, one of the major vertebrate model organisms used to study gene function in development and disease. The XPO implements design patterns from the Unified Phenotype Ontology (uPheno), and the principles outlined by the Open Biological and Biomedical Ontologies (OBO Foundry) to maximize interoperability with other species and facilitate ongoing ontology management. Constructed in Web Ontology Language (OWL) the XPO combines the existing uPheno library of ontology design patterns with additional terms from the Xenopus Anatomy Ontology (XAO), the Phenotype and Trait Ontology (PATO) and the Gene Ontology (GO). The integration of these different ontologies into the XPO enables rich phenotypic curation, whilst the uPheno bridging axioms allows phenotypic data from Xenopus experiments to be related to phenotype data from other model organisms and human disease. Moreover, the simple post-composed uPheno design patterns facilitate ongoing XPO development as the generation of new terms and classes of terms can be substantially automated. CONCLUSIONS: The XPO serves as an example of current best practices to help overcome many of the inherent challenges in harmonizing phenotype data between different species. The XPO currently consists of approximately 22,000 terms and is being used to curate phenotypes by Xenbase, the Xenopus Model Organism Knowledgebase, forming a standardized corpus of genotype-phenotype data that can be directly related to other uPheno compliant resources.


Subject(s)
Biological Ontologies , Animals , Gene Ontology , Humans , Phenotype , Xenopus laevis
4.
Nucleic Acids Res ; 48(D1): D776-D782, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31733057

ABSTRACT

Xenbase (www.xenbase.org) is a knowledge base for researchers and biomedical scientists that employ the amphibian Xenopus as a model organism in biomedical research to gain a deeper understanding of developmental and disease processes. Through expert curation and automated data provisioning from various sources Xenbase strives to integrate the body of knowledge on Xenopus genomics and biology together with the visualization of biologically significant interactions. Most current studies utilize next generation sequencing (NGS) but until now the results of different experiments were difficult to compare and not integrated with other Xenbase content. Xenbase has developed a suite of tools, interfaces and data processing pipelines that transforms NCBI Gene Expression Omnibus (GEO) NGS content into deeply integrated gene expression and chromatin data, mapping all aligned reads to the most recent genome builds. This content can be queried and visualized via multiple tools and also provides the basis for future automated 'gene expression as a phenotype' and gene regulatory network analyses.


Subject(s)
Databases, Genetic , Gene Regulatory Networks/genetics , Genomics , Software , Xenopus/genetics , Animals , Chromatin Immunoprecipitation Sequencing , Gene Expression/genetics , High-Throughput Nucleotide Sequencing , RNA-Seq , User-Computer Interface
5.
Front Physiol ; 10: 154, 2019.
Article in English | MEDLINE | ID: mdl-30863320

ABSTRACT

At a fundamental level most genes, signaling pathways, biological functions and organ systems are highly conserved between man and all vertebrate species. Leveraging this conservation, researchers are increasingly using the experimental advantages of the amphibian Xenopus to model human disease. The online Xenopus resource, Xenbase, enables human disease modeling by curating the Xenopus literature published in PubMed and integrating these Xenopus data with orthologous human genes, anatomy, and more recently with links to the Online Mendelian Inheritance in Man resource (OMIM) and the Human Disease Ontology (DO). Here we review how Xenbase supports disease modeling and report on a meta-analysis of the published Xenopus research providing an overview of the different types of diseases being modeled in Xenopus and the variety of experimental approaches being used. Text mining of over 50,000 Xenopus research articles imported into Xenbase from PubMed identified approximately 1,000 putative disease- modeling articles. These articles were manually assessed and annotated with disease ontologies, which were then used to classify papers based on disease type. We found that Xenopus is being used to study a diverse array of disease with three main experimental approaches: cell-free egg extracts to study fundamental aspects of cellular and molecular biology, oocytes to study ion transport and channel physiology and embryo experiments focused on congenital diseases. We integrated these data into Xenbase Disease Pages to allow easy navigation to disease information on external databases. Results of this analysis will equip Xenopus researchers with a suite of experimental approaches available to model or dissect a pathological process. Ideally clinicians and basic researchers will use this information to foster collaborations necessary to interrogate the development and treatment of human diseases.

6.
Methods Mol Biol ; 1757: 251-305, 2018.
Article in English | MEDLINE | ID: mdl-29761462

ABSTRACT

Xenbase is the Xenopus model organism database ( www.xenbase.org ), a web-accessible resource that integrates the diverse genomic and biological data for Xenopus research. It hosts a variety of content including current and archived genomes for both X. laevis and X. tropicalis, bioinformatic tools for comparative genetic analyses including BLAST and GBrowse, annotated Xenopus literature, and catalogs of reagents including antibodies, ORFeome clones, morpholinos, and transgenic lines. Xenbase compiles gene-specific pages which include manually curated gene expression images, functional information including gene ontology (GO), disease associations, and links to other major data sources such as NCBI:Entrez, UniProtKB, and Ensembl. We also maintain the Xenopus Anatomy Ontology (XAO) which describes anatomy throughout embryonic development. This chapter provides a full description of the many features of Xenbase, and offers a guide on how to use various tools to perform a variety of common tasks such as identifying nucleic acid or protein sequences, finding gene expression patterns for specific genes, stages or tissues, identifying literature on a specific gene or tissue, locating useful reagents and downloading our extensive content, including Xenopus gene-Human gene disease mapping files.


Subject(s)
Databases, Genetic , Gene Expression , Genome , Genomics , Xenopus laevis/genetics , Animals , Computational Biology/methods , Gene Ontology , Genomics/methods , Software , User-Computer Interface , Web Browser
7.
Nucleic Acids Res ; 43(Database issue): D756-63, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25313157

ABSTRACT

Xenbase (http://www.xenbase.org), the Xenopus frog model organism database, integrates a wide variety of data from this biomedical model genus. Two closely related species are represented: the allotetraploid Xenopus laevis that is widely used for microinjection and tissue explant-based protocols, and the diploid Xenopus tropicalis which is used for genetics and gene targeting. The two species are extremely similar and protocols, reagents and results from each species are often interchangeable. Xenbase imports, indexes, curates and manages data from both species; all of which are mapped via unique IDs and can be queried in either a species-specific or species agnostic manner. All our services have now migrated to a private cloud to achieve better performance and reliability. We have added new content, including providing full support for morpholino reagents, used to inhibit mRNA translation or splicing and binding to regulatory microRNAs. New genomes assembled by the JGI for both species and are displayed in Gbrowse and are also available for searches using BLAST. Researchers can easily navigate from genome content to gene page reports, literature, experimental reagents and many other features using hyperlinks. Xenbase has also greatly expanded image content for figures published in papers describing Xenopus research via PubMedCentral.


Subject(s)
Databases, Genetic , Xenopus/genetics , Animals , Animals, Genetically Modified , Disease/genetics , Genome , Humans , Internet , MicroRNAs/metabolism , Models, Animal , Morpholinos , Oligonucleotides, Antisense , Xenopus/immunology , Xenopus laevis/genetics
8.
Development ; 141(2): 448-59, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24353059

ABSTRACT

Angiogenesis defines the process in which new vessels grow from existing vessels. Using the mouse retina as a model system, we show that cysteine-rich motor neuron 1 (Crim1), a type I transmembrane protein, is highly expressed in angiogenic endothelial cells. Conditional deletion of the Crim1 gene in vascular endothelial cells (VECs) causes delayed vessel expansion and reduced vessel density. Based on known Vegfa binding by Crim1 and Crim1 expression in retinal vasculature, where angiogenesis is known to be Vegfa dependent, we tested the hypothesis that Crim1 is involved in the regulation of Vegfa signaling. Consistent with this hypothesis, we showed that VEC-specific conditional compound heterozygotes for Crim1 and Vegfa exhibit a phenotype that is more severe than each single heterozygote and indistinguishable from that of the conditional homozygotes. We further showed that human CRIM1 knockdown in cultured VECs results in diminished phosphorylation of VEGFR2, but only when VECs are required to rely on an autocrine source of VEGFA. The effect of CRIM1 knockdown on reducing VEGFR2 phosphorylation was enhanced when VEGFA was also knocked down. Finally, an anti-VEGFA antibody did not enhance the effect of CRIM1 knockdown in reducing VEGFR2 phosphorylation caused by autocrine signaling, but VEGFR2 phosphorylation was completely suppressed by SU5416, a small-molecule VEGFR2 kinase inhibitor. These data are consistent with a model in which Crim1 enhances the autocrine signaling activity of Vegfa in VECs at least in part via Vegfr2.


Subject(s)
Bone Morphogenetic Protein Receptors/metabolism , Retinal Vessels/growth & development , Retinal Vessels/metabolism , Vascular Endothelial Growth Factor A/metabolism , Alleles , Animals , Autocrine Communication , Bone Morphogenetic Protein Receptors/antagonists & inhibitors , Bone Morphogenetic Protein Receptors/genetics , Cell Proliferation , Endothelial Cells/metabolism , Gene Knockdown Techniques , Heterozygote , Homozygote , Human Umbilical Vein Endothelial Cells , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Mutant Strains , Mice, Transgenic , Neovascularization, Physiologic , Pericytes/metabolism , Phenotype , Phosphorylation , RNA, Small Interfering/genetics , Retinal Vessels/embryology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
9.
J Biomed Semantics ; 4(1): 31, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24139024

ABSTRACT

BACKGROUND: The African clawed frogs Xenopus laevis and Xenopus tropicalis are prominent animal model organisms. Xenopus research contributes to the understanding of genetic, developmental and molecular mechanisms underlying human disease. The Xenopus Anatomy Ontology (XAO) reflects the anatomy and embryological development of Xenopus. The XAO provides consistent terminology that can be applied to anatomical feature descriptions along with a set of relationships that indicate how each anatomical entity is related to others in the embryo, tadpole, or adult frog. The XAO is integral to the functionality of Xenbase (http://www.xenbase.org), the Xenopus model organism database. RESULTS: We significantly expanded the XAO in the last five years by adding 612 anatomical terms, 2934 relationships between them, 640 synonyms, and 547 ontology cross-references. Each term now has a definition, so database users and curators can be certain they are selecting the correct term when specifying an anatomical entity. With developmental timing information now asserted for every anatomical term, the ontology provides internal checks that ensure high-quality gene expression and phenotype data annotation. The XAO, now with 1313 defined anatomical and developmental stage terms, has been integrated with Xenbase expression and anatomy term searches and it enables links between various data types including images, clones, and publications. Improvements to the XAO structure and anatomical definitions have also enhanced cross-references to anatomy ontologies of other model organisms and humans, providing a bridge between Xenopus data and other vertebrates. The ontology is free and open to all users. CONCLUSIONS: The expanded and improved XAO allows enhanced capture of Xenopus research data and aids mechanisms for performing complex retrieval and analysis of gene expression, phenotypes, and antibodies through text-matching and manual curation. Its comprehensive references to ontologies across taxa help integrate these data for human disease modeling.

10.
Database (Oxford) ; 2013: bas046, 2013.
Article in English | MEDLINE | ID: mdl-23303299

ABSTRACT

Xenbase (www.xenbase.org) is the model organism database for Xenopus tropicalis and Xenopus laevis, two frog species used as model systems for developmental and cell biology. Xenbase curation processes centre on associating papers with genes and extracting gene expression patterns. Papers from PubMed with the keyword 'Xenopus' are imported into Xenbase and split into two curation tracks. In the first track, papers are automatically associated with genes and anatomy terms, images and captions are semi-automatically imported and gene expression patterns found in those images are manually annotated using controlled vocabularies. In the second track, full text of the same papers are downloaded and indexed by a number of controlled vocabularies and made available to users via the Textpresso search engine and text mining tool.


Subject(s)
Data Mining/methods , Databases, Genetic , Publications , Xenopus/genetics , Animals , Gene Expression Profiling , PubMed , Software , Vocabulary, Controlled
11.
Nucleic Acids Res ; 41(Database issue): D865-70, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23125366

ABSTRACT

Xenbase (http://www.xenbase.org) is a model organism database that provides genomic, molecular, cellular and developmental biology content to biomedical researchers working with the frog, Xenopus and Xenopus data to workers using other model organisms. As an amphibian Xenopus serves as a useful evolutionary bridge between invertebrates and more complex vertebrates such as birds and mammals. Xenbase content is collated from a variety of external sources using automated and semi-automated pipelines then processed via a combination of automated and manual annotation. A link-matching system allows for the wide variety of synonyms used to describe biological data on unique features, such as a gene or an anatomical entity, to be used by the database in an equivalent manner. Recent updates to the database include the Xenopus laevis genome, a new Xenopus tropicalis genome build, epigenomic data, collections of RNA and protein sequences associated with genes, more powerful gene expression searches, a community and curated wiki, an extensive set of manually annotated gene expression patterns and a new database module that contains data on over 700 antibodies that are useful for exploring Xenopus cell and developmental biology.


Subject(s)
Databases, Genetic , Xenopus/genetics , Animals , Antibodies , Epigenesis, Genetic , Gene Expression , Genome , Internet , Models, Animal , Vocabulary, Controlled , Xenopus/anatomy & histology , Xenopus/embryology , Xenopus Proteins/chemistry , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis/genetics
12.
PLoS One ; 7(3): e32635, 2012.
Article in English | MEDLINE | ID: mdl-22427856

ABSTRACT

In multicellular organisms, morphogenesis is a highly coordinated process that requires dynamically regulated adhesion between cells. An excellent example of cellular morphogenesis is the formation of the neural tube from the flattened epithelium of the neural plate. Cysteine-rich motor neuron protein 1 (CRIM1) is a single-pass (type 1) transmembrane protein that is expressed in neural structures beginning at the neural plate stage. In the frog Xenopus laevis, loss of function studies using CRIM1 antisense morpholino oligonucleotides resulted in a failure of neural development. The CRIM1 knockdown phenotype was, in some cases, mild and resulted in perturbed neural fold morphogenesis. In severely affected embryos there was a dramatic failure of cell adhesion in the neural plate and complete absence of neural structures subsequently. Investigation of the mechanism of CRIM1 function revealed that it can form complexes with ß-catenin and cadherins, albeit indirectly, via the cytosolic domain. Consistent with this, CRIM1 knockdown resulted in diminished levels of cadherins and ß-catenin in junctional complexes in the neural plate. We conclude that CRIM1 is critical for cell-cell adhesion during neural development because it is required for the function of cadherin-dependent junctions.


Subject(s)
Intercellular Junctions/physiology , Membrane Proteins/metabolism , Morphogenesis/physiology , Multiprotein Complexes/metabolism , Neural Tube/embryology , Xenopus Proteins/metabolism , Xenopus laevis/embryology , Animals , Cadherins/metabolism , DNA Primers/genetics , Fluorescent Antibody Technique , Gene Knockdown Techniques , HEK293 Cells , Humans , Immunoblotting , Immunoprecipitation , In Situ Hybridization , Membrane Proteins/physiology , Morpholinos , Xenopus Proteins/physiology , beta Catenin/metabolism
13.
Am J Hum Genet ; 87(4): 523-31, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-20850105

ABSTRACT

Congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder that can be associated with impaired night vision. The last decade has witnessed huge progress in ophthalmic genetics, including the identification of three genes implicated in the pathogenicity of autosomal-recessive CSNB. However, not all patients studied could be associated with mutations in these genes and thus other genes certainly underlie this disorder. Here, we report a large multigeneration family with five affected individuals manifesting symptoms of night blindness. A genome-wide scan localized the disease interval to chromosome 15q, and recombination events in affected individuals refined the critical interval to a 10.41 cM (6.53 Mb) region that harbors SLC24A1, a member of the solute carrier protein superfamily. Sequencing of all the coding exons identified a 2 bp deletion in exon 2: c.1613_1614del, which is predicted to result in a frame shift that leads to premature termination of SLC24A1 (p.F538CfsX23) and segregates with the disorder under an autosomal-recessive model. Expression analysis using mouse ocular tissues shows that Slc24a1 is expressed in the retina around postnatal day 7. In situ and immunohistological studies localized both SLC24A1 and Slc24a1 to the inner segment, outer and inner nuclear layers, and ganglion cells of the retina, respectively. Our data expand the genetic basis of CSNB and highlight the indispensible function of SLC24A1 in retinal function and/or maintenance in humans.


Subject(s)
Chromosomes, Human, Pair 15/genetics , Night Blindness/genetics , Sodium-Calcium Exchanger/genetics , Animals , Base Sequence , Genes, Recessive , Humans , Immunohistochemistry , In Situ Hybridization , Mice , Molecular Sequence Data , Retina/metabolism , Sequence Analysis, DNA , Sequence Deletion/genetics , Sodium-Calcium Exchanger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...