Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Article in English | MEDLINE | ID: mdl-38145509

ABSTRACT

Although federated learning (FL) has achieved outstanding results in privacy-preserved distributed learning, the setting of model homogeneity among clients restricts its wide application in practice. This article investigates a more general case, namely, model-heterogeneous FL (M-hete FL), where client models are independently designed and can be structurally heterogeneous. M-hete FL faces new challenges in collaborative learning because the parameters of heterogeneous models could not be directly aggregated. In this article, we propose a novel allosteric feature collaboration (AlFeCo) method, which interchanges knowledge across clients and collaboratively updates heterogeneous models on the server. Specifically, an allosteric feature generator is developed to reveal task-relevant information from multiple client models. The revealed information is stored in the client-shared and client-specific codes. We exchange client-specific codes across clients to facilitate knowledge interchange and generate allosteric features that are dimensionally variable for model updates. To promote information communication between different clients, a dual-path (model-model and model-prediction) communication mechanism is designed to supervise the collaborative model updates using the allosteric features. Client models are fully communicated through the knowledge interchange between models and between models and predictions. We further provide theoretical evidence and convergence analysis to support the effectiveness of AlFeCo in M-hete FL. The experimental results show that the proposed AlFeCo method not only performs well on classical FL benchmarks but also is effective in model-heterogeneous federated antispoofing. Our codes are publicly available at https://github.com/ybaoyao/AlFeCo.

2.
Article in English | MEDLINE | ID: mdl-37883256

ABSTRACT

Automatic lesion segmentation is important for assisting doctors in the diagnostic process. Recent deep learning approaches heavily rely on large-scale datasets, which are difficult to obtain in many clinical applications. Leveraging external labelled datasets is an effective solution to tackle the problem of insufficient training data. In this paper, we propose a new framework, namely LatenTrans, to utilize existing datasets for boosting the performance of lesion segmentation in extremely low data regimes. LatenTrans translates non-target lesions into target-like lesions and expands the training dataset with target-like data for better performance. Images are first projected to the latent space via aligned style-based generative models, and rich lesion semantics are encoded using the latent codes. A novel consistency-aware latent code manipulation module is proposed to enable high-quality local style transfer from non-target lesions to target-like lesions while preserving other parts. Moreover, we propose a new metric, Normalized Latent Distance, to solve the question of how to select an adequate one from various existing datasets for knowledge transfer. Extensive experiments are conducted on segmenting lung and brain lesions, and the experimental results demonstrate that our proposed LatenTrans is superior to existing methods for cross-disease lesion segmentation.

3.
IEEE Trans Med Imaging ; 42(3): 797-809, 2023 03.
Article in English | MEDLINE | ID: mdl-36288236

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a severe global pandemic. Accurate pneumonia infection segmentation is important for assisting doctors in diagnosing COVID-19. Deep learning-based methods can be developed for automatic segmentation, but the lack of large-scale well-annotated COVID-19 training datasets may hinder their performance. Semi-supervised segmentation is a promising solution which explores large amounts of unlabelled data, while most existing methods focus on pseudo-label refinement. In this paper, we propose a new perspective on semi-supervised learning for COVID-19 pneumonia infection segmentation, namely pseudo-label guided image synthesis. The main idea is to keep the pseudo-labels and synthesize new images to match them. The synthetic image has the same COVID-19 infected regions as indicated in the pseudo-label, and the reference style extracted from the style code pool is added to make it more realistic. We introduce two representative methods by incorporating the synthetic images into model training, including single-stage Synthesis-Assisted Cross Pseudo Supervision (SA-CPS) and multi-stage Synthesis-Assisted Self-Training (SA-ST), which can work individually as well as cooperatively. Synthesis-assisted methods expand the training data with high-quality synthetic data, thus improving the segmentation performance. Extensive experiments on two COVID-19 CT datasets for segmenting the infections demonstrate our method is superior to existing schemes for semi-supervised segmentation, and achieves the state-of-the-art performance on both datasets. Code is available at: https://github.com/FeiLyu/SASSL.


Subject(s)
COVID-19 , Pneumonia , Humans , COVID-19/diagnostic imaging , Pandemics , Supervised Machine Learning
4.
Article in English | MEDLINE | ID: mdl-35609091

ABSTRACT

Face presentation attack detection (fPAD) plays a critical role in the modern face recognition pipeline. An fPAD model with good generalization can be obtained when it is trained with face images from different input distributions and different types of spoof attacks. In reality, training data (both real face images and spoof images) are not directly shared between data owners due to legal and privacy issues. In this article, with the motivation of circumventing this challenge, we propose a federated face presentation attack detection (FedPAD) framework that simultaneously takes advantage of rich fPAD information available at different data owners while preserving data privacy. In the proposed framework, each data owner (referred to as data centers) locally trains its own fPAD model. A server learns a global fPAD model by iteratively aggregating model updates from all data centers without accessing private data in each of them. Once the learned global model converges, it is used for fPAD inference. To equip the aggregated fPAD model in the server with better generalization ability to unseen attacks from users, following the basic idea of FedPAD, we further propose a federated generalized face presentation attack detection (FedGPAD) framework. A federated domain disentanglement strategy is introduced in FedGPAD, which treats each data center as one domain and decomposes the fPAD model into domain-invariant and domain-specific parts in each data center. Two parts disentangle the domain-invariant and domain-specific features from images in each local data center. A server learns a global fPAD model by only aggregating domain-invariant parts of the fPAD models from data centers, and thus, a more generalized fPAD model can be aggregated in server. We introduce the experimental setting to evaluate the proposed FedPAD and FedGPAD frameworks and carry out extensive experiments to provide various insights about federated learning for fPAD.

5.
IEEE Trans Med Imaging ; 41(9): 2510-2520, 2022 09.
Article in English | MEDLINE | ID: mdl-35404812

ABSTRACT

Automatic liver tumor segmentation could offer assistance to radiologists in liver tumor diagnosis, and its performance has been significantly improved by recent deep learning based methods. These methods rely on large-scale well-annotated training datasets, but collecting such datasets is time-consuming and labor-intensive, which could hinder their performance in practical situations. Learning from synthetic data is an encouraging solution to address this problem. In our task, synthetic tumors can be injected to healthy images to form training pairs. However, directly applying the model trained using the synthetic tumor images on real test images performs poorly due to the domain shift problem. In this paper, we propose a novel approach, namely Synthetic-to-Real Test-Time Training (SR-TTT), to reduce the domain gap between synthetic training images and real test images. Specifically, we add a self-supervised auxiliary task, i.e., two-step reconstruction, which takes the output of the main segmentation task as its input to build an explicit connection between these two tasks. Moreover, we design a scheduled mixture strategy to avoid error accumulation and bias explosion in the training process. During test time, we adapt the segmentation model to each test image with self-supervision from the auxiliary task so as to improve the inference performance. The proposed method is extensively evaluated on two public datasets for liver tumor segmentation. The experimental results demonstrate that our proposed SR-TTT can effectively mitigate the synthetic-to-real domain shift problem in the liver tumor segmentation task, and is superior to existing state-of-the-art approaches.


Subject(s)
Liver Neoplasms , Neural Networks, Computer , Abdomen , Humans , Image Processing, Computer-Assisted/methods , Liver Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods
6.
IEEE Trans Pattern Anal Mach Intell ; 44(2): 924-939, 2022 02.
Article in English | MEDLINE | ID: mdl-32750841

ABSTRACT

Deep embedding learning plays a key role in learning discriminative feature representations, where the visually similar samples are pulled closer and dissimilar samples are pushed away in the low-dimensional embedding space. This paper studies the unsupervised embedding learning problem by learning such a representation without using any category labels. This task faces two primary challenges: mining reliable positive supervision from highly similar fine-grained classes, and generalizing to unseen testing categories. To approximate the positive concentration and negative separation properties in category-wise supervised learning, we introduce a data augmentation invariant and instance spreading feature using the instance-wise supervision. We also design two novel domain-agnostic augmentation strategies to further extend the supervision in feature space, which simulates the large batch training using a small batch size and the augmented features. To learn such a representation, we propose a novel instance-wise softmax embedding, which directly perform the optimization over the augmented instance features with the binary discrmination softmax encoding. It significantly accelerates the learning speed with much higher accuracy than existing methods, under both seen and unseen testing categories. The unsupervised embedding performs well even without pre-trained network over samples from fine-grained categories. We also develop a variant using category-wise supervision, namely category-wise softmax embedding, which achieves competitive performance over the state-of-of-the-arts, without using any auxiliary information or restrict sample mining.


Subject(s)
Algorithms , Attention
7.
IEEE Trans Cybern ; 52(5): 3394-3407, 2022 May.
Article in English | MEDLINE | ID: mdl-32795976

ABSTRACT

Medical time series of laboratory tests has been collected in electronic health records (EHRs) in many countries. Machine-learning algorithms have been proposed to analyze the condition of patients using these medical records. However, medical time series may be recorded using different laboratory parameters in different datasets. This results in the failure of applying a pretrained model on a test dataset containing a time series of different laboratory parameters. This article proposes to solve this problem with an unsupervised time-series adaptation method that generates time series across laboratory parameters. Specifically, a medical time-series generation network with similarity distillation is developed to reduce the domain gap caused by the difference in laboratory parameters. The relations of different laboratory parameters are analyzed, and the similarity information is distilled to guide the generation of target-domain specific laboratory parameters. To further improve the performance in cross-domain medical applications, a missingness-aware feature extraction network is proposed, where the missingness patterns reflect the health conditions and, thus, serve as auxiliary features for medical analysis. In addition, we also introduce domain-adversarial networks in both feature level and time-series level to enhance the adaptation across domains. Experimental results show that the proposed method achieves good performance on both private and publicly available medical datasets. Ablation studies and distribution visualization are provided to further analyze the properties of the proposed method.


Subject(s)
Algorithms , Distillation , Electronic Health Records , Humans , Machine Learning , Time Factors
8.
IEEE Trans Image Process ; 31: 419-432, 2022.
Article in English | MEDLINE | ID: mdl-34874854

ABSTRACT

Many unsupervised domain adaptation (UDA) methods have been developed and have achieved promising results in various pattern recognition tasks. However, most existing methods assume that raw source data are available in the target domain when transferring knowledge from the source to the target domain. Due to the emerging regulations on data privacy, the availability of source data cannot be guaranteed when applying UDA methods in a new domain. The lack of source data makes UDA more challenging, and most existing methods are no longer applicable. To handle this issue, this paper analyzes the cross-domain representations in source-data-free unsupervised domain adaptation (SF-UDA). A new theorem is derived to bound the target-domain prediction error using the trained source model instead of the source data. On the basis of the proposed theorem, information bottleneck theory is introduced to minimize the generalization upper bound of the target-domain prediction error, thereby achieving domain adaptation. The minimization is implemented in a variational inference framework using a newly developed latent alignment variational autoencoder (LA-VAE). The experimental results show good performance of the proposed method in several cross-dataset classification tasks without using source data. Ablation studies and feature visualization also validate the effectiveness of our method in SF-UDA.

9.
IEEE Trans Med Imaging ; 41(5): 1138-1149, 2022 05.
Article in English | MEDLINE | ID: mdl-34871168

ABSTRACT

Automatic liver tumor segmentation is of great importance for assisting doctors in liver cancer diagnosis and treatment planning. Recently, deep learning approaches trained with pixel-level annotations have contributed many breakthroughs in image segmentation. However, acquiring such accurate dense annotations is time-consuming and labor-intensive, which limits the performance of deep neural networks for medical image segmentation. We note that Couinaud segment is widely used by radiologists when recording liver cancer-related findings in the reports, since it is well-suited for describing the localization of tumors. In this paper, we propose a novel approach to train convolutional networks for liver tumor segmentation using Couinaud segment annotations. Couinaud segment annotations are image-level labels with values ranging from 1 to 8, indicating a specific region of the liver. Our proposed model, namely CouinaudNet, can estimate pseudo tumor masks from the Couinaud segment annotations as pixel-wise supervision for training a fully supervised tumor segmentation model, and it is composed of two components: 1) an inpainting network with Couinaud segment masks which can effectively remove tumors for pathological images by filling the tumor regions with plausible healthy-looking intensities; 2) a difference spotting network for segmenting the tumors, which is trained with healthy-pathological pairs generated by an effective tumor synthesis strategy. The proposed method is extensively evaluated on two liver tumor segmentation datasets. The experimental results demonstrate that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods while requiring significantly less annotation effort.


Subject(s)
Image Processing, Computer-Assisted , Liver Neoplasms , Humans , Image Processing, Computer-Assisted/methods , Liver Neoplasms/diagnostic imaging , Neural Networks, Computer , Supervised Machine Learning
10.
J Am Med Inform Assoc ; 28(4): 713-726, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33496786

ABSTRACT

OBJECTIVE: Accurate risk prediction is important for evaluating early medical treatment effects and improving health care quality. Existing methods are usually designed for dynamic medical data, which require long-term observations. Meanwhile, important personalized static information is ignored due to the underlying uncertainty and unquantifiable ambiguity. It is urgent to develop an early risk prediction method that can adaptively integrate both static and dynamic health data. MATERIALS AND METHODS: Data were from 6367 patients with Peptic Ulcer Bleeding between 2007 and 2016. This article develops a novel End-to-end Importance-Aware Personalized Deep Learning Approach (eiPDLA) to achieve accurate early clinical risk prediction. Specifically, eiPDLA introduces a long short-term memory with temporal attention to learn sequential dependencies from time-stamped records and simultaneously incorporating a residual network with correlation attention to capture their influencing relationship with static medical data. Furthermore, a new multi-residual multi-scale network with the importance-aware mechanism is designed to adaptively fuse the learned multisource features, automatically assigning larger weights to important features while weakening the influence of less important features. RESULTS: Extensive experimental results on a real-world dataset illustrate that our method significantly outperforms the state-of-the-arts for early risk prediction under various settings (eg, achieving an AUC score of 0.944 at 1 year ahead of risk prediction). Case studies indicate that the achieved prediction results are highly interpretable. CONCLUSION: These results reflect the importance of combining static and dynamic health data, mining their influencing relationship, and incorporating the importance-aware mechanism to automatically identify important features. The achieved accurate early risk prediction results save precious time for doctors to timely design effective treatments and improve clinical outcomes.


Subject(s)
Deep Learning , Peptic Ulcer Hemorrhage , Precision Medicine , Risk Assessment/methods , Data Mining , Datasets as Topic , Humans , Models, Theoretical , Neural Networks, Computer , Prognosis
11.
IEEE Trans Neural Netw Learn Syst ; 32(10): 4665-4679, 2021 10.
Article in English | MEDLINE | ID: mdl-33055037

ABSTRACT

Influenced by the dynamic changes in the severity of illness, patients usually take examinations in hospitals irregularly, producing a large volume of irregular medical time-series data. Performing diagnosis prediction from the irregular medical time series is challenging because the intervals between consecutive records significantly vary along time. Existing methods often handle this problem by generating regular time series from the irregular medical records without considering the uncertainty in the generated data, induced by the varying intervals. Thus, a novel Uncertainty-Aware Convolutional Recurrent Neural Network (UA-CRNN) is proposed in this article, which introduces the uncertainty information in the generated data to boost the risk prediction. To tackle the complex medical time series with subseries of different frequencies, the uncertainty information is further incorporated into the subseries level rather than the whole sequence to seamlessly adjust different time intervals. Specifically, a hierarchical uncertainty-aware decomposition layer (UADL) is designed to adaptively decompose time series into different subseries and assign them proper weights in accordance with their reliabilities. Meanwhile, an Explainable UA-CRNN (eUA-CRNN) is proposed to exploit filters with different passbands to ensure the unity of components in each subseries and the diversity of components in different subseries. Furthermore, eUA-CRNN incorporates with an uncertainty-aware attention module to learn attention weights from the uncertainty information, providing the explainable prediction results. The extensive experimental results on three real-world medical data sets illustrate the superiority of the proposed method compared with the state-of-the-art methods.


Subject(s)
Deep Learning/trends , Electronic Health Records/trends , Neural Networks, Computer , Uncertainty , Humans , Time Factors
12.
Artif Intell Med ; 107: 101883, 2020 07.
Article in English | MEDLINE | ID: mdl-32828441

ABSTRACT

Regular medical records are useful for medical practitioners to analyze and monitor patient's health status especially for those with chronic disease. However, such records are usually incomplete due to unpunctuality and absence of patients. In order to resolve the missing data problem over time, tensor-based models have been developed for missing data imputation in recent papers. This approach makes use of the low-rank tensor assumption for highly correlated data in a short-time interval. Nevertheless, when the time intervals are long, data correlation may not be high between consecutive time stamps so that such assumption is not valid. To address this problem, we propose to decompose matrices with missing data over time into their latent factors. Then, the locally linear constraint is imposed on the latent factors for temporal matrix completion. By using three publicly available medical datasets and two medical datasets collected from Prince of Wales Hospital in Hong Kong, experimental results show that the proposed algorithm achieves the best performance compared with state-of-the-art methods.


Subject(s)
Algorithms , Humans
13.
Article in English | MEDLINE | ID: mdl-30640612

ABSTRACT

Cross-camera label estimation from a set of unlabelled training data is an extremely important component in unsupervised person re-identification (re-ID) systems. With the estimated labels, existing advanced supervised learning methods can be leveraged to learn discriminative re-ID models. In this paper, we utilize the graph matching technique for accurate label estimation due to its advantages in optimal global matching and intra-camera relationship mining. However, the graph structure constructed with non-learnt similarity measurement cannot handle the large cross-camera variations, which leads to noisy and inaccurate label outputs. This paper designs a Dynamic Graph Matching (DGM) framework, which improves the label estimation process by iteratively refining the graph structure with better similarity measurement learnt from intermediate estimated labels. In addition, we design a positive re-weighting strategy to refine the intermediate labels, which enhances the robustness against inaccurate matching output and noisy initial training data. To fully utilize the abundant video information and reduce false matchings, a co-matching strategy is further incorporated into the framework. Comprehensive experiments conducted on three video benchmarks demonstrate that DGM outperforms state-of-the-art unsupervised re-ID methods and yields competitive performance to fully supervised upper bounds.

14.
IEEE Trans Pattern Anal Mach Intell ; 41(5): 1188-1202, 2019 05.
Article in English | MEDLINE | ID: mdl-29993435

ABSTRACT

State-of-the-art face recognition systems are based on deep (convolutional) neural networks. Therefore, it is imperative to determine to what extent face templates derived from deep networks can be inverted to obtain the original face image. In this paper, we study the vulnerabilities of a state-of-the-art face recognition system based on template reconstruction attack. We propose a neighborly de-convolutional neural network (NbNet) to reconstruct face images from their deep templates. In our experiments, we assumed that no knowledge about the target subject and the deep network are available. To train the NbNet reconstruction models, we augmented two benchmark face datasets (VGG-Face and Multi-PIE) with a large collection of images synthesized using a face generator. The proposed reconstruction was evaluated using type-I (comparing the reconstructed images against the original face images used to generate the deep template) and type-II (comparing the reconstructed images against a different face image of the same subject) attacks. Given the images reconstructed from NbNets, we show that for verification, we achieve TAR of 95.20 percent (58.05 percent) on LFW under type-I (type-II) attacks @ FAR of 0.1 percent. Besides, 96.58 percent (92.84 percent) of the images reconstructed from templates of partition fa (fb) can be identified from partition fa in color FERET. Our study demonstrates the need to secure deep templates in face recognition systems.


Subject(s)
Biometric Identification/methods , Face , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Algorithms , Databases, Factual , Face/anatomy & histology , Face/diagnostic imaging , Humans
15.
IEEE Trans Image Process ; 27(4): 2022-2037, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29989985

ABSTRACT

The use of multiple features has been shown to be an effective strategy for visual tracking because of their complementary contributions to appearance modeling. The key problem is how to learn a fused representation from multiple features for appearance modeling. Different features extracted from the same object should share some commonalities in their representations while each feature should also have some feature-specific representation patterns which reflect its complementarity in appearance modeling. Different from existing multi-feature sparse trackers which only consider the commonalities among the sparsity patterns of multiple features, this paper proposes a novel multiple sparse representation framework for visual tracking which jointly exploits the shared and feature-specific properties of different features by decomposing multiple sparsity patterns. Moreover, we introduce a novel online multiple metric learning to efficiently and adaptively incorporate the appearance proximity constraint, which ensures that the learned commonalities of multiple features are more representative. Experimental results on tracking benchmark videos and other challenging videos demonstrate the effectiveness of the proposed tracker.

16.
IEEE Trans Pattern Anal Mach Intell ; 40(7): 1611-1624, 2018 07.
Article in English | MEDLINE | ID: mdl-28715325

ABSTRACT

Similarity search is essential to many important applications and often involves searching at scale on high-dimensional data based on their similarity to a query. In biometric applications, recent vulnerability studies have shown that adversarial machine learning can compromise biometric recognition systems by exploiting the biometric similarity information. Existing methods for biometric privacy protection are in general based on pairwise matching of secured biometric templates and have inherent limitations in search efficiency and scalability. In this paper, we propose an inference-based framework for privacy-preserving similarity search in Hamming space. Our approach builds on an obfuscated distance measure that can conceal Hamming distance in a dynamic interval. Such a mechanism enables us to systematically design statistically reliable methods for retrieving most likely candidates without knowing the exact distance values. We further propose to apply Montgomery multiplication for generating search indexes that can withstand adversarial similarity analysis, and show that information leakage in randomized Montgomery domains can be made negligibly small. Our experiments on public biometric datasets demonstrate that the inference-based approach can achieve a search accuracy close to the best performance possible with secure computation methods, but the associated cost is reduced by orders of magnitude compared to cryptographic primitives.


Subject(s)
Biometric Identification/methods , Confidentiality , Face/anatomy & histology , Algorithms , Databases, Factual , Humans , Machine Learning
17.
IEEE Trans Cybern ; 46(5): 1065-77, 2016 May.
Article in English | MEDLINE | ID: mdl-26054080

ABSTRACT

Biometric verification systems are designed to accept multiple similar biometric measurements per user due to inherent intrauser variations in the biometric data. This is important to preserve reasonable acceptance rate of genuine queries and the overall feasibility of the recognition system. However, such acceptance of multiple similar measurements decreases the imposter's difficulty of obtaining a system-acceptable measurement, thus resulting in a degraded security level. This deteriorated security needs to be measurable to provide truthful security assurance to the users. Entropy is a standard measure of security. However, the entropy formula is applicable only when there is a single acceptable possibility. In this paper, we develop an entropy-measuring model for biometric systems that accepts multiple similar measurements per user. Based on the idea of guessing entropy, the proposed model quantifies biometric system security in terms of adversarial guessing effort for two practical attacks. Excellent agreement between analytic and experimental simulation-based measurement results on a synthetic and a benchmark face dataset justify the correctness of our model and thus the feasibility of the proposed entropy-measuring approach.

18.
IEEE Trans Image Process ; 24(12): 5826-41, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26415172

ABSTRACT

Visual tracking using multiple features has been proved as a robust approach because features could complement each other. Since different types of variations such as illumination, occlusion, and pose may occur in a video sequence, especially long sequence videos, how to properly select and fuse appropriate features has become one of the key problems in this approach. To address this issue, this paper proposes a new joint sparse representation model for robust feature-level fusion. The proposed method dynamically removes unreliable features to be fused for tracking by using the advantages of sparse representation. In order to capture the non-linear similarity of features, we extend the proposed method into a general kernelized framework, which is able to perform feature fusion on various kernel spaces. As a result, robust tracking performance is obtained. Both the qualitative and quantitative experimental results on publicly available videos show that the proposed method outperforms both sparse representation-based and fusion based-trackers.

19.
IEEE Trans Image Process ; 24(5): 1599-613, 2015 May.
Article in English | MEDLINE | ID: mdl-25622315

ABSTRACT

This paper addresses a new person reidentification problem without label information of persons under nonoverlapping target cameras. Given the matched (positive) and unmatched (negative) image pairs from source domain cameras, as well as unmatched (negative) and unlabeled image pairs from target domain cameras, we propose an adaptive ranking support vector machines (AdaRSVMs) method for reidentification under target domain cameras without person labels. To overcome the problems introduced due to the absence of matched (positive) image pairs in the target domain, we relax the discriminative constraint to a necessary condition only relying on the positive mean in the target domain. To estimate the target positive mean, we make use of all the available data from source and target domains as well as constraints in person reidentification. Inspired by adaptive learning methods, a new discriminative model with high confidence in target positive mean and low confidence in target negative image pairs is developed by refining the distance model learnt from the source domain. Experimental results show that the proposed AdaRSVM outperforms existing supervised or unsupervised, learning or non-learning reidentification methods without using label information in target cameras. Moreover, our method achieves better reidentification performance than existing domain adaptation methods derived under equal conditional probability assumption.


Subject(s)
Algorithms , Biometric Identification/methods , Biometry/methods , Image Interpretation, Computer-Assisted/methods , Photography/methods , Subtraction Technique , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
20.
IEEE Trans Pattern Anal Mach Intell ; 35(5): 1135-48, 2013 May.
Article in English | MEDLINE | ID: mdl-23520255

ABSTRACT

This paper addresses the independent assumption issue in fusion process. In the last decade, dependency modeling techniques were developed under a specific distribution of classifiers or by estimating the joint distribution of the posteriors. This paper proposes a new framework to model the dependency between features without any assumption on feature/classifier distribution, and overcomes the difficulty in estimating the high-dimensional joint density. In this paper, we prove that feature dependency can be modeled by a linear combination of the posterior probabilities under some mild assumptions. Based on the linear combination property, two methods, namely, Linear Classifier Dependency Modeling (LCDM) and Linear Feature Dependency Modeling (LFDM), are derived and developed for dependency modeling in classifier level and feature level, respectively. The optimal models for LCDM and LFDM are learned by maximizing the margin between the genuine and imposter posterior probabilities. Both synthetic data and real datasets are used for experiments. Experimental results show that LCDM and LFDM with dependency modeling outperform existing classifier level and feature level combination methods under nonnormal distributions and on four real databases, respectively. Comparing the classifier level and feature level fusion methods, LFDM gives the best performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...