Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoarthritis Cartilage ; 15(5): 566-74, 2007 May.
Article in English | MEDLINE | ID: mdl-17157538

ABSTRACT

UNLABELLED: Continuous passive motion (CPM) is currently a part of patient rehabilitation regimens after a variety of orthopedic surgical procedures. While CPM can enhance the joint healing process, the direct effects of CPM on cartilage metabolism remain unknown. Recent in vivo and in vitro observations suggest that mechanical stimuli can regulate articular cartilage metabolism of proteoglycan 4 (PRG4), a putative lubricating and chondroprotective molecule found in synovial fluid and at the articular cartilage surface. OBJECTIVES: (1) Determine the topographical variation in intrinsic cartilage PRG4 secretion. (2) Apply a CPM device to whole joints in bioreactors and assess effects of CPM on PRG4 biosynthesis. METHODS: A bioreactor was developed to apply CPM to bovine stifle joints in vitro. Effects of 24h of CPM on PRG4 biosynthesis were determined. RESULTS: PRG4 secretion rate varied markedly over the joint surface. Rehabilitative joint motion applied in the form of CPM regulated PRG4 biosynthesis, in a manner dependent on the duty cycle of cartilage sliding against opposing tissues. Specifically, in certain regions of the femoral condyle that were continuously or intermittently sliding against meniscus and tibial cartilage during CPM, chondrocyte PRG4 synthesis was higher with CPM than without. CONCLUSIONS: Rehabilitative joint motion, applied in the form of CPM, stimulates chondrocyte PRG4 metabolism. The stimulation of PRG4 synthesis is one mechanism by which CPM may benefit cartilage and joint health in post-operative rehabilitation.


Subject(s)
Cartilage, Articular/metabolism , Chondrocytes/metabolism , Proteoglycans/biosynthesis , Animals , Cattle , Physical Stimulation , Physical Therapy Modalities , Stifle
4.
Perception ; 19(2): 161-70, 1990.
Article in English | MEDLINE | ID: mdl-2235284

ABSTRACT

Low-level preattentive vision processing is of special interest since it seems the logical starting point of all vision processing. Exploration of the human visual processing system at this level is, however, extremely difficult, but can be facilitated by the use of stroboscopic presentation of sequences of random-dot stereograms, which contain only local spatial and temporal information and therefore limit the processing of these images to the low level. Four experiments are described in which such sequences were used to explore the relationships between various cues (optical flow, stereo disparity, and accretion and deletion of image points) at the low level. To study these relationships in more depth, especially the resolution of conflicting information among the cues, some of the image sequences presented information not usually encountered in 'natural' scenes. The results indicate that the processing of these cues is undertaken as a set of cooperative processes.


Subject(s)
Attention , Depth Perception , Discrimination Learning , Motion Perception , Optical Illusions , Pattern Recognition, Visual , Humans , Orientation , Size Perception , Vision Disparity
SELECTION OF CITATIONS
SEARCH DETAIL
...