Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 21735, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741079

ABSTRACT

The COVID19 pandemic, caused by SARS-CoV-2, has infected more than 200 million people worldwide. Due to the rapid spreading of SARS-CoV-2 and its impact, it is paramount to find effective treatments against it. Human neutralizing antibodies are an effective method to fight viral infection. However, the recent discovery of new strains that substantially change the S-protein sequence has raised concern about vaccines and antibodies' effectiveness. Here, using molecular simulations, we investigated the binding mechanisms between the S-protein and several antibodies. Multiple mutations were included to understand the strategies for antibody escape in new variants. We found that the combination of mutations K417N, E484K, L452R, and T478K produced higher binding energy to ACE2 than the wild type, suggesting higher efficiency to enter host cells. The mutations' effect depends on the antibody class. While Class I enhances the binding avidity in the presence of N501Y mutation, class II antibodies showed a sharp decline in the binding affinity. Our simulations suggest that Class I antibodies will remain effective against the new strains. In contrast, Class II antibodies will have less affinity to the S-protein, potentially affecting these antibodies' efficiency.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , COVID-19/immunology , COVID-19/virology , Mutation , SARS-CoV-2/genetics , Antibodies, Viral/immunology , Cluster Analysis , Computational Biology , Computer Simulation , Humans , Hydrogen Bonding , Molecular Conformation , Molecular Dynamics Simulation , Protein Binding , Signal Transduction , Spike Glycoprotein, Coronavirus/metabolism
2.
Sci Rep ; 10(1): 17538, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067518

ABSTRACT

The binding affinity and adhesive strength between the spike (S) glycoproteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the human angiotensin-converting enzyme 2 (ACE2) receptor is computed using molecular dynamics (MD) simulations. The calculations indicate that the binding affinity is [Formula: see text] [Formula: see text] with a maximum adhesive force of [Formula: see text] pN. Our analysis suggests that only 27 (13 in S-protein, 14 in ACE2) residues are active during the initial fusion process between the S-protein and ACE2 receptor. With these insights, we investigated the effect of possible therapeutics in the size and wrapping time of virus particles by reducing the binding energy. Our analysis indicates that this energy has to be reduced significantly, around 50% or more, to block SARS-CoV-2 particles with radius in the order of [Formula: see text] nm. Our study provides concise target residues and target binding energy reduction between S-proteins and receptors for the development of new therapeutics treatments for COVID-19 guided by computational design.


Subject(s)
Coronavirus Infections/pathology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Betacoronavirus/isolation & purification , Binding Sites , COVID-19 , Coronavirus Infections/virology , Endocytosis , Humans , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/virology , Protein Binding , SARS-CoV-2 , Static Electricity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...