Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Dent Sci ; 19(2): 978-989, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38618135

ABSTRACT

Background/purpose: Attention to caries administration has altered toward an early finding of lesions and targeted to noninvasive management with a remineralizing agent. This study compared the remineralization potential of apacider mangosteen adhesive pastes (AMAP), 500-ppm fluoride toothpaste (FT500), and 1000-ppm fluoride toothpaste (FT1000) on artificial caries. Materials and methods: Artificial caries were generated to enamel of eighty extracted human premolars. The specimens were allocated to four groups and subjected to pH-cycling with the application of testing agents (2 min each, for 10 days): (1) AMAP, dairy, (2) FT500, twice a day, (3) FT1000, twice a day, and (4) no treatment (NT). The surface microhardness was determined before demineralization, after demineralization, and after application of pH-cycling. The hardness, percent of hardness recovery (%HR), and percent of remineralization potential (%RP) were analyzed with ANOVA and Bonferroni's test (α = 0.05). Polarized light microscopy (PLM) was assessed for lesion depth. Results: Significant differences in remineralization were observed upon various agents compared to NT (P < 0.05). A significant difference in remineralization was found among AMAP, FT1000, and FT500 (P < 0.05). No significant difference in %HR and %RP was observed between AMAP and FT1000 (P > 0.05). PLM signified greater decrease in depth for AMAP, compared to FT1000 and FT500, but no depth reduction for NT. Conclusion: AMAP possesses comparable remineralization ability to FT1000. However, decreasing in depth of carious lesions was evinced with using AMAP more than FT1000 and FT500. AMAP was recommended as a potential remineralization material for handling initial caries.

SELECTION OF CITATIONS
SEARCH DETAIL
...