Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38585966

ABSTRACT

Bacteria-based cancer therapy (BBCT) strains grow selectively in primary tumors and metastases, colonize solid tumors independent of genetics, and kill cells resistant to standard molecular therapy. Clinical trials of BBCT in solid tumors have not reported any survival advantage yet, partly due to the limited bacterial colonization. Collagen, abundant in primary and metastatic solid tumors, has a well-known role in hindering intratumoral penetration of therapeutics. Nevertheless, the effect of collagen content on the intratumoral penetration and antitumor efficacy of BBCT is rarely unexplored. We hypothesized that the presence of collagen limits the penetration and, thereby, the antitumor effects of tumor-selective Salmonella. Typhimurium VNP20009 cheY+. We tested our hypothesis in low and high collagen content tumor spheroid models of triple-negative murine breast cancer. We found that high collagen content significantly hinders bacteria transport in tumors, reducing bacteria penetration and distribution by ~7-fold. The higher penetration of bacteria in low collagen-content tumors led to an overwhelming antitumor effect (~73% increase in cell death), whereas only a 28% increase in cell death was seen in the high collagen-content tumors. Our mathematical modeling of intratumoral bacterial colonization delineates the role of growth and diffusivity, suggesting an order of magnitude lower diffusivity in the high collagen-content tumors dominates the observed outcomes. Finally, our single-cell resolution analysis reveals a strong spatial correlation between bacterial spatial localization and collagen content, further corroborating that collagen acts as a barrier to bacterial penetration despite S. Typhimurium VNP20009 cheY+ motility. Understanding the effect of collagen on BBCT performance could lead to engineering more efficacious BBCT strains capable of overcoming this barrier to colonization of primary tumors and metastases.

2.
Am J Physiol Cell Physiol ; 281(3): C1038-45, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11502582

ABSTRACT

Disruption of microfilaments in human umbilical vein endothelial cells (HUVEC) with cytochalasin D (cytD) or latrunculin A (latA) resulted in a 3.3- to 5.7-fold increase in total synthesis of prostaglandin E(2) (PGE(2)) and a 3.4- to 6.5-fold increase in prostacyclin (PGI(2)) compared with control cells. Disruption of the microtubule network with nocodazole or colchicine increased synthesis of PGE(2) 1.7- to 1.9-fold and PGI(2) 1.9- to 2.0-fold compared with control cells. Interestingly, however, increased release of PGE(2) and PGI(2) from HUVEC into the media occurred only when microfilaments were disrupted. CytD treatment resulted in 6.7-fold more PGE(2) and 3.8-fold more PGI(2) released from HUVEC compared with control cells; latA treatment resulted in 17.7-fold more PGE(2) and 11.2-fold more PGI(2) released compared with control cells. Both increased synthesis and release of prostaglandins in response to all drug treatments were completely inhibited by NS-398, a specific inhibitor of cyclooxygenase-2 (COX-2). Disruption of either microfilaments using cytD or latA or of microtubules using nocodazole or colchicine resulted in a significant increase in COX-2 protein levels, suggesting that the increased synthesis of prostaglandins in response to drug treatments may result from increased activity of COX-2. These results, together with studies demonstrating a vasoprotective role for prostaglandins, suggest that the cytoskeleton plays an important role in maintenance of endothelial barrier function by regulating prostaglandin synthesis and release from HUVEC.


Subject(s)
Actins/physiology , Cytoskeleton/physiology , Dinoprostone/metabolism , Endothelium, Vascular/physiology , Epoprostenol/metabolism , Apoptosis/drug effects , Apoptosis/physiology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Colchicine/pharmacology , Cytochalasin D/pharmacology , Cytoskeleton/drug effects , Cytoskeleton/ultrastructure , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Humans , Kinetics , Marine Toxins/pharmacology , Microtubules/drug effects , Microtubules/physiology , Microtubules/ultrastructure , Nocodazole/pharmacology , Thiazoles/pharmacology , Thiazolidines , Umbilical Veins
SELECTION OF CITATIONS
SEARCH DETAIL