Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 13(5)2023 05 13.
Article in English | MEDLINE | ID: mdl-37238701

ABSTRACT

PURPOSE: To investigate the anti-inflammatory and anti-angiogenic effects of the bioactive lipid mediator LXA4 on a rat model of severe corneal alkali injury. METHODS: To induce a corneal alkali injury in the right eyes of anesthetized Sprague Dawley rats. They were injured with a Φ 4 mm filter paper disc soaked in 1 N NaOH placed on the center of the cornea. After injury, the rats were treated topically with LXA4 (65 ng/20 µL) or vehicle three times a day for 14 days. Corneal opacity, neovascularization (NV), and hyphema were recorded and evaluated in a blind manner. Pro-inflammatory cytokine expression and genes involved in cornel repair were assayed by RNA sequencing and capillary Western blot. Cornea cell infiltration and monocytes isolated from the blood were analyzed by immunofluorescence and by flow cytometry. RESULTS: Topical treatment with LXA4 for two weeks significantly reduced corneal opacity, NV, and hyphema compared to the vehicle treatment. RNA-seq and Western blot results showed that LXA4 decreased the gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1ß and IL-6 and pro-angiogenic mediators matrix metalloproteinase (MMP)-9 and vascular endothelial growth factor (VEGFA). It also induces genes involved in keratinization and ErbB signaling and downregulates immune pathways to stimulate wound healing. Flow cytometry and immunohistochemistry showed significantly less infiltration of neutrophils in the corneas treated with LXA4 compared to vehicle treatment. It also revealed that LXA4 treatment increases the proportion of type 2 macrophages (M2) compared to M1 in blood-isolated monocytes. CONCLUSIONS: LXA4 decreases corneal inflammation and NV induced by a strong alkali burn. Its mechanism of action includes inhibition of inflammatory leukocyte infiltration, reduction in cytokine release, suppression of angiogenic factors, and promotion of corneal repair gene expression and macrophage polarization in blood from alkali burn corneas. LXA4 has potential as a therapeutic candidate for severe corneal chemical injuries.


Subject(s)
Burns, Chemical , Corneal Opacity , Rats , Animals , Burns, Chemical/drug therapy , Burns, Chemical/metabolism , Vascular Endothelial Growth Factor A , Alkalies/adverse effects , Hyphema , Transcriptome , Rats, Sprague-Dawley , Neovascularization, Pathologic , Cytokines/metabolism , Corneal Opacity/chemically induced , Corneal Opacity/drug therapy , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism
2.
PLoS One ; 17(5): e0268383, 2022.
Article in English | MEDLINE | ID: mdl-35587486

ABSTRACT

For complex communication signals, it is often difficult to identify the information-bearing elements and their parameters necessary to elicit functional behavior. Consequently, it may be difficult to design stimuli that test how neurons contribute to communicative processing. For túngara frogs (Physalaemus pustulosus), however, previous behavioral testing with numerous stimuli showed that a particular frequency modulated (FM) transition in the male call is required to elicit phonotaxis and vocal responses. Modeled on such behavioral experiments, we used awake in vivo recordings of single units in the midbrain to determine if their excitation was biased to behaviorally important FM parameters. Comparisons of stimulus driven action potentials revealed greatest excitation to the behaviorally important FM transition: a downward FM sweep or step that crosses ~600 Hz. Previous studies using long-duration acoustic exposure found immediate early gene expression in many midbrain neurons to be most sensitive to similar FM. However, those data could not determine if FM coding was accomplished by the population and/or individual neurons. Our data suggest both coding schemes could operate, as 1) individual neurons are more sensitive to the behaviorally significant FM transition and 2) when single unit recordings are analytically combined across cells, the combined code can produce high stimulus discrimination (FM vs. noise driven excitation), approaching that found in behavioral discrimination of call vs. noise.


Subject(s)
Neurons , Sound , Acoustic Stimulation , Action Potentials/physiology , Animals , Anura , Male , Mesencephalon , Neurons/physiology
3.
Mol Ther ; 28(12): 2662-2676, 2020 12 02.
Article in English | MEDLINE | ID: mdl-32818431

ABSTRACT

Usher syndrome is a syndromic form of hereditary hearing impairment that includes sensorineural hearing loss and delayed-onset retinitis pigmentosa (RP). Type 1 Usher syndrome (USH1) is characterized by congenital profound sensorineural hearing impairment and vestibular areflexia, with adolescent-onset RP. Systemic treatment with antisense oligonucleotides (ASOs) targeting the human USH1C c.216G>A splicing mutation in a knockin mouse model of USH1 restores hearing and balance. Herein, we explore the effect of delivering ASOs locally to the ear to treat hearing and vestibular dysfunction associated with Usher syndrome. Three localized delivery strategies were investigated in USH1C mice: inner ear injection, trans-tympanic membrane injection, and topical tympanic membrane application. We demonstrate, for the first time, that ASOs delivered directly to the ear correct Ush1c expression in inner ear tissue, improve cochlear hair cell transduction currents, restore vestibular afferent irregularity, spontaneous firing rate, and sensitivity to head rotation, and successfully recover hearing thresholds and balance behaviors in USH1C mice. We conclude that local delivery of ASOs to the middle and inner ear reach hair cells and can rescue both hearing and balance. These results also demonstrate the therapeutic potential of ASOs to treat hearing and balance deficits associated with Usher syndrome and other ear diseases.


Subject(s)
Cell Cycle Proteins/genetics , Cytoskeletal Proteins/genetics , Ear, Middle/drug effects , Genetic Therapy/methods , Hair Cells, Auditory/drug effects , Mutation , Oligonucleotides, Antisense/administration & dosage , Usher Syndromes/genetics , Usher Syndromes/therapy , Vestibule, Labyrinth/drug effects , Administration, Topical , Animals , Animals, Newborn , Disease Models, Animal , Female , Gene Knock-In Techniques , Hair Cells, Auditory/metabolism , Hearing/drug effects , Injections , Male , Mice , Mice, Inbred C57BL , Tympanic Membrane/drug effects , Vestibule, Labyrinth/metabolism
4.
J Assoc Res Otolaryngol ; 19(1): 1-16, 2018 02.
Article in English | MEDLINE | ID: mdl-29027038

ABSTRACT

The absence of functional outer hair cells is a component of several forms of hereditary hearing impairment, including Usher syndrome, the most common cause of concurrent hearing and vision loss. Antisense oligonucleotide (ASO) treatment of mice with the human Usher mutation, Ush1c c.216G>A, corrects gene expression and significantly improves hearing, as measured by auditory-evoked brainstem responses (ABRs), as well as inner and outer hair cell (IHC and OHC) bundle morphology. However, it is not clear whether the improvement in hearing achieved by ASO treatment involves the functional rescue of outer hair cells. Here, we show that Ush1c c.216AA mice lack OHC function as evidenced by the absence of distortion product otoacoustic emissions (DPOAEs) in response to low-, mid-, and high-frequency tone pairs. This OHC deficit is rescued by treatment with an ASO that corrects expression of Ush1c c.216G>A. Interestingly, although rescue of inner hairs cells, as measured by ABR, is achieved by ASO treatment as late as 7 days after birth, rescue of outer hair cells, measured by DPOAE, requires treatment before post-natal day 5. These results suggest that ASO-mediated rescue of both IHC and OHC function is age dependent and that the treatment window is different for the different cell types. The timing of treatment for congenital hearing disorders is of critical importance for the development of drugs such ASO-29 for hearing rescue.


Subject(s)
Hair Cells, Auditory, Outer/drug effects , Oligonucleotides, Antisense/therapeutic use , Usher Syndromes/drug therapy , Age Factors , Animals , Carrier Proteins/genetics , Cell Cycle Proteins , Cytoskeletal Proteins , Evoked Potentials, Auditory, Brain Stem , Hair Cells, Auditory, Outer/physiology , Mice , Mutation , Oligonucleotides, Antisense/pharmacology , Otoacoustic Emissions, Spontaneous , Usher Syndromes/physiopathology
5.
Article in English | MEDLINE | ID: mdl-25120437

ABSTRACT

Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.


Subject(s)
Auditory Perception/physiology , Functional Laterality/physiology , Mesencephalon/physiology , Sound , Thalamus/physiology , Acoustic Stimulation , Action Potentials/physiology , Analysis of Variance , Animals , Anura , Auditory Pathways/physiology , Electric Stimulation , Mesencephalon/cytology , Neurons/physiology , Wakefulness
6.
Article in English | MEDLINE | ID: mdl-23344947

ABSTRACT

Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28% of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f=±16%). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45% of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments.


Subject(s)
Auditory Perception , Ear/innervation , Mesencephalon/physiology , Neuronal Plasticity , Rana pipiens/physiology , Signal Detection, Psychological , Acoustic Stimulation , Adaptation, Physiological , Animals , Auditory Pathways/physiology , Pitch Perception , Time Factors
7.
Article in English | MEDLINE | ID: mdl-20559640

ABSTRACT

Sensitivity to acoustic amplitude modulation in crickets differs between species and depends on carrier frequency (e.g., calling song vs. bat-ultrasound bands). Using computational tools, we explore how Ca(2+)-dependent mechanisms underlying selective attention can contribute to such differences in amplitude modulation sensitivity. For omega neuron 1 (ON1), selective attention is mediated by Ca(2+)-dependent feedback: [Ca(2+)](internal) increases with excitation, activating a Ca(2+)-dependent after-hyperpolarizing current. We propose that Ca(2+) removal rate and the size of the after-hyperpolarizing current can determine ON1's temporal modulation transfer function (TMTF). This is tested using a conductance-based simulation calibrated to responses in vivo. The model shows that parameter values that simulate responses to single pulses are sufficient in simulating responses to modulated stimuli: no special modulation-sensitive mechanisms are necessary, as high and low-pass portions of the TMTF are due to Ca(2+)-dependent spike frequency adaptation and post-synaptic potential depression, respectively. Furthermore, variance in the two biophysical parameters is sufficient to produce TMTFs of varying bandwidth, shifting amplitude modulation sensitivity like that in different species and in response to different carrier frequencies. Thus, the hypothesis that the size of after-hyperpolarizing current and the rate of Ca(2+) removal can affect amplitude modulation sensitivity is computationally validated.


Subject(s)
Auditory Perception/physiology , Calcium/metabolism , Gryllidae/physiology , Interneurons/physiology , Models, Neurological , Models, Theoretical , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...