Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35544777

ABSTRACT

Osteochondral regeneration remains a vital problem in clinical situations affecting both bone and cartilage tissues due to the low regeneration ability of cartilage tissue. Additionally, the simultaneous regeneration of bone and cartilage is difficult to attain due to their dissimilar nature. Thus, fabricating a single scaffold for both bone and cartilage regeneration remains challenging. Biomaterials are frequently employed to promote tissue restoration, but they still cannot replicate the structure of native tissue. This study aims to create a single biomaterial that could be used to regenerate both bone and cartilage. This study focuses on synthesizing calcium-deficient apatite (CDA) with the gradual addition of manganese. The phase stability and the effect of heat treatment on manganese-doped CDA were studied using X-ray diffraction (XRD) and Rietveld refinement. The obtained powders were tested for their 3-dimensional (3D) printing ability by fabricating cuboidal 3D structures. The 3D printed scaffolds were examined for external topography using field-emission scanning electron microscopy (FE-SEM) and were subjected to compression testing. In vitro biocompatibility and differentiation studies were performed to access their biocompatibility and differentiation capabilities. Reverse transcription-quantitative PCR (RT-qPCR) analysis was done to determine the gene expression of bone- and cartilage-specific markers. Mn helps in stabilizing the ß-TCP phase beyond its sintering temperature without being degraded to α-TCP. Mn addition in CDA improves the compressive strength of the fabricated scaffolds while keeping them biocompatible. The concentrations of Mn in the CDA ceramic were found to influence the differentiation behavior of MSCs in the fabricated scaffolds. Mn-doped CDA is a promising candidate to be used as a substitute material for bone, cartilage, and osteochondral defects to facilitate repair and regeneration via endochondral differentiation. 3D printing can assist in the fabrication of a multifunctional single-unit scaffold with varied Mn concentrations, which might be able to generate the two tissues in situ in an osteochondral defect.

2.
Materials (Basel) ; 15(8)2022 Apr 17.
Article in English | MEDLINE | ID: mdl-35454617

ABSTRACT

Biocompatible ß-Ca3(PO4)2 and mechanically stable t-ZrO2 composites are currently being combined to overcome the demerits of the individual components. A series of five composites were synthesized using an aqueous precipitation technique. Their structural and mechanical stability was examined through X-ray diffraction, Rietveld refinement, FTIR, Raman spectroscopy, high-resolution scanning electron microscopy, and nanoindentation. The characterization results confirmed the formation of ß-Ca3(PO4)2-t-ZrO2 composites at 1100 °C. Heat treatment above 900 °C resulted in the degradation of the composites because of cationic interdiffusion between Ca2+ ions and O-2 vacancy in Zr4+ ions. Sequential thermal treatments correspond to four different fractional phases: calcium-deficient apatite, ß-Ca3(PO4)2, t-ZrO2, and m-ZrO2. The morphological features confirm in situ synthesis, which reveals abnormal grain growth with voids caused by the upsurge in ZrO2 content. The mechanical stability data indicate significant variation in Young's modulus and hardness throughout the composite.

SELECTION OF CITATIONS
SEARCH DETAIL