Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365571

ABSTRACT

In recent years, the demand for environmental sustainability has caused a great interest in finding novel polymer materials from natural resources that are both biodegradable and eco-friendly. Natural biodegradable polymers can displace the usage of petroleum-based synthetic polymers due to their renewability, low toxicity, low costs, biocompatibility, and biodegradability. The development of novel starch-based bionanocomposites with improved properties has drawn specific attention recently in many applications, including food, agriculture, packaging, environmental remediation, textile, cosmetic, pharmaceutical, and biomedical fields. This paper discusses starch-based nanocomposites, mainly with nanocellulose, chitin nanoparticles, nanoclay, and carbon-based materials, and their applications in the agriculture, packaging, biomedical, and environment fields. This paper also focused on the lifecycle analysis and degradation of various starch-based nanocomposites.

2.
Polymers (Basel) ; 14(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36235981

ABSTRACT

The current trend of using plastic material in the manufacturing of packaging products raises serious environmental concerns due to waste disposal on land and in oceans and other environmental pollution. Natural polymers such as cellulose, starch, chitosan, and protein extracted from renewable resources are extensively explored as alternatives to plastics due to their biodegradability, biocompatibility, nontoxic properties, and abundant availability. The tensile and water vapor barrier properties and the environmental impacts of natural polymers played key roles in determining the eligibility of these materials for packaging applications. The brittle behavior and hydrophilic nature of natural polymers reduced the tensile and water vapor barrier properties. However, the addition of plasticizer, crosslinker, and reinforcement agents substantially improved the mechanical and water vapor resistance properties. The dispersion abilities and strong interfacial adhesion of nanocellulose with natural polymers improved the tensile strength and water vapor barrier properties of natural polymer-based packaging films. The maximum tensile stress of these composite films was about 38 to 200% more than that of films without reinforcement. The water vapor barrier properties of composite films also reduced up to 60% with nanocellulose reinforcement. The strong hydrogen bonding between natural polymer and nanocellulose reduced the polymer chain movement and decreased the percent elongation at break up to 100%. This review aims to present an overview of the mechanical and water vapor barrier properties of natural polymers and their composites along with the life cycle environmental impacts to elucidate their potential for packaging applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...