Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chemosphere ; 308(Pt 2): 136379, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36088978

ABSTRACT

This research aimed to evaluate the adsorption behaviors and mechanisms of perfluorooctanoic acid (PFOA) onto polyethyleneimine modified graphene oxide (GO-PEI) from aqueous solutions. The adsorption capacity was significantly improved by doping polyethyleneimine (PEI) onto graphene oxide (GO). The Brunauer-Emmett-Teller (BET) isotherm model was considered as the best isotherm model in describing the PFOA adsorption onto GO-PEI3 (wPEI/wGO = 3). GO-PEI3 exhibited high adsorption capacity (qe = 368.2 mg/g, calculated from BET isotherm model) and excellent stability. The maximum monolayer amount of PFOA adsorption onto GO-PEI3 (qm = 231.2 mg/g) was successfully evaluated. The calculated saturated concentration (Cs = 169.9 mg/L) of PFOA on GO-PEI3 closely agrees with its critical micelle concentration (CMC = 157.0 mg/L), suggesting the formation of multilayer hemi-micelles or micelles PFOA structures on the surface of GO-PEI3. PFOA adsorption onto GO-PEI3 was inhibited by several factors including: the presence of humic acid (HA) by competing with the adsorption sites, background salts through the double-layer compression effect, and the competition from soluble ions for the amine or amide functional groups on GO-PEI3. Finally, both the FT-IR and XPS results confirmed that the adsorption of PFOA onto GO-PEI3 was through electrostatic attraction and hydrophobic interaction (physical adsorption), but not chemical adsorption. This work provides fundamental knowledge both in understanding the adsorption behavior through the BET isotherm model and in developing a stable adsorbent for PFOA adsorption. In addition, the findings highlight the potential of PFOA remediation from wastewater systems using GO-PEI in engineering applications.


Subject(s)
Carbonated Water , Polyethyleneimine , Amides , Amines , Caprylates , Fluorocarbons , Graphite , Humic Substances , Micelles , Polyethyleneimine/chemistry , Salts , Spectroscopy, Fourier Transform Infrared , Steam , Wastewater/chemistry , Water
2.
Environ Res ; 212(Pt E): 113537, 2022 09.
Article in English | MEDLINE | ID: mdl-35671799

ABSTRACT

Antibiotics in water systems and wastewater are among the greatest major public health problem and it is global environmental issues. Herein a novel approach for the photocatalytic degradation of metronidazole (MTZ) by using eco-green zinc oxide nanoparticles (EG-ZnO NPs) which biosynthesised using watermelon peels extracts has been investigated. Mathematical prediction models using an adaptive neuro-fuzzy inference system (ANFIS), artificial neural networks (ANN) and response surface methodology (RSM) were used to determine the optimal conditions for the degradation process. The FESEM analysis revealed that EG-ZnO NPs was white with a spherical shape and size between 40 and 88 nm. The simulation process for the mathematical prediction model revealed that the best validation performance was 55.35 recorded at epoch 2, the coefficient (R2) was 0.9967 for training data, as detected using ANN analysis. The best operating parameters for MTZ degradation was predicted using RSM to be: 170 mg L-1 of EG-ZnO NPs, 20.61 mg 100 mL-1 of MTZ, 10 min exposure time, and a pH of 5, with 77.48 vs 78.14% corresponding to the predicted and empirically measured respectively. The photocatalytic degradation of MTZ was fitted with pseudo-first-order kinetic (R2 > 0.90). MTZ lost the antimicrobial activity against Bacillus cereus (B. cereus) and Escherichia coli (E. coli) after degradation with EG-ZnO NPs at the optimal conditions as determined in the optimization process. These findings reflect the important role ANFIS and ANN in predicting and optimising the efficacy of engineered nanomaterials, including EG-ZnO NPs, for antibiotic degradation.


Subject(s)
Citrullus , Nanoparticles , Zinc Oxide , Citrullus/metabolism , Escherichia coli , Machine Learning , Metronidazole , Nanoparticles/chemistry , Plant Extracts , Zinc Oxide/chemistry
3.
Environ Res ; 209: 112831, 2022 06.
Article in English | MEDLINE | ID: mdl-35123962

ABSTRACT

The abundance of antibiotic-resistant bacteria in the prawn pond effluents can substantially impact the natural environment. The settlement ponds, which are the most common treatment method for farms wastewater, might effectively reduce the suspended solids and organic matter. However, the method is insufficient for bacterial inactivation. The current paper seeks to highlight the environmental issue associated with the distribution of antibiotic resistant bacteria (ARB) from prawn farm wastewater and their impact on the microbial complex community in the surface water which receiving these wastes. The inactivation of antibiotic-resistant bacteria in prawn wastewater is strongly recommended because the presence of antibiotic-resistant bacteria in the environment causes water pollution and public health issues. The nanoparticles are more efficient for bacterial inactivation. They are widely accepted due to their high chemical and mechanical stability, broad spectrum of radiation absorption, high catalytic activity, and high antimicrobial activity. Many studies have examined the use of fungi or plants extract to synthesis zinc oxide nanoparticles (ZnO NPs). It is evident from recent papers in the literature that green synthesized ZnO NPs from microbes and plant extracts are non-toxic and effective. ZnO NPs inactivate the bacterial cells as a function for releasing reactive oxygen species (ROS) and zinc ions. The inactivation of antibiotic-resistant bacteria tends to be more than 90% which exhibit strong antimicrobial behavior against bacterial species.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Microbial Sensitivity Tests , Plant Extracts , Zinc Oxide/pharmacology
4.
Chemosphere ; 288(Pt 2): 132603, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34678351

ABSTRACT

Biofilm represents one of the crucial factors for the emergence of multi-drug resistance bacterial infections. The high mortality, morbidity and medical device-related infections are associated with biofilm formation, which requires primarily seek alternative treatment strategies. Recently, nanotechnology has emerged as a promising method for eradicating bacterial biofilm-related infection. The efficacy of nanoparticles (NPs) against bacterial infections interest great attention, and the researches on the subject are rapidly increasing. However, the majority of studies continue to focus on the antimicrobial effects of NPs in vitro, while only a few achieved in vivo and very few registered as clinical trials. The present review aimed to organize the scattered available information regarding NPs approach to eradicate bacterial biofilm-related infections. The current review highlighted the advantages and disadvantages associated with this approach, in addition to the challenges that prevent reaching the clinical applications. It was appeared that the production of NPs either as antimicrobials or as drug carriers requires further investigations to overcome the obstacles associated with their kinetic and biocompatibility.


Subject(s)
Bacterial Infections , Nanoparticles , Biofilms , Drug Carriers , Humans , Nanotechnology
5.
Chemosphere ; 287(Pt 1): 131958, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34454222

ABSTRACT

Remediation of emerging pharmaceutically active compounds (PhACs) as micropollutants in wastewater is of foremost importance as they can cause extremely detrimental effects on life upon bioaccumulation and generation of drug-resistance microorganisms. Presently used physicochemical treatments, such as electrochemical oxidation, nanofiltration and reverse osmosis, are not feasible owing to high operating costs, incomplete removal of contaminants along with toxic by-products formation. Adsorption with the utilization of facile and efficient nanoparticulate adsorbents having distinctive properties of high surface area, excellent adsorption capacity, ability to undergo surface engineering and good regeneration displays great potential in this aspect along with the incorporation of nanotechnology for effective treatment. The application of such nanosorbents provides optimal performance under a wide range of physicochemical conditions, decreased secondary pollution with reduced mechanical stress along with excellent organic compound sequestration capacity, which in turn improves the quality of potable water in a sustainable way compared to current treatments. The present review intends to consolidate the range of factors that affect the process of adsorption of different PhACs on to various nanosorbents and also highlights the adsorption mechanism aiding in the retrieval.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Water Purification , Adsorption , Wastewater/analysis , Water Pollutants, Chemical/analysis
6.
Chemosphere ; 289: 133012, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34838836

ABSTRACT

Cannabis, a genus of perennial indigenous plants is well known for its recreational and medicinal activities. Cannabis and its derivatives have potential therapeutic activities to treat epilepsy, anxiety, depression, tumors, cancer, Alzheimer's disease, Parkinson's disease, to name a few. This article reviews some recent literature on the bioactive constituents of Cannabis, commonly known as phytocannabinoids, their interactions with the different cannabinoids and non-cannabinoid receptors as well as the significances of these interactions in treating various diseases and syndromes. The biochemistry of some notable cannabinoids such as tetrahydrocannabinol, cannabidiol, cannabinol, cannabigerol, cannabichromene and their carboxylic acid derivatives is explained in the context of therapeutic activities. The medicinal features of Cannabis-derived terpenes are elucidated for treating several neuro and non-neuro disorders. Different extraction techniques to recover cannabinoids are systematically discussed. Besides the medicinal activities, the traditional and recreational utilities of Cannabis and its derivatives are presented. A brief note on the legalization of Cannabis-derived products is provided. This review provides comprehensive knowledge about the medicinal properties, recreational usage, extraction techniques, legalization and some prospects of cannabinoids and terpenes extracted from Cannabis.


Subject(s)
Cannabidiol , Cannabis , Cannabinol , Dronabinol
7.
8.
Environ Res ; 201: 111564, 2021 10.
Article in English | MEDLINE | ID: mdl-34228950

ABSTRACT

Endophytic wild fungal strain Phyllosticta elongata MH458897 isolated from medicinal plant Cipadessa baccifera from the Western Ghats region of Sathyamangalam Tiger Reserve Forest. This endophytic fungus has potential of effective anticancer drug Camptothecin (CPT). Endophytic fungi act as key symbionts in-between plants and ecosystem in the biosphere. This recently identified microbial population inside the plants produces many defence metabolites against plant pathogens. Among these defense metabolites, CPT gained much attention because of its effective anticancer activity. The maximum yield of CPT produced by optimizing the various factors like DEKM07 medium, pH 5.6, incubation time using Response Surface Methodology based on Central Composite Design. Extracted CPT is characterized using High Performance Liquid Chromatography and Electrospray ionization-Mass spectrometry. The highest yield of CPT was 0.747 mg/L was produced at optimized factors of dextrose - 50 g L-1, peptone - 5.708 g L-1, magnesium sulphate - 0.593 g L-1, and incubation time - 14 days. In-vitro MTT assay revealed the CPT derivatives were cytotoxic to A-549 cancer cell line (IC50 58.28 µg/ml) as nearly compared to the (IC50 51.08 µg/ml) standard CPT. CPT producing strain P. elongata from C. baccifera has the potential of CPT biosynthesis, and could be an effective anticancer bio metabolite. This compound has been described in the literature to be an effective anticancer metabolite. Our findings support the novel lifesaving anticancer drug from endophytic fungus in forest ecosystem concludes effective utilization of key symbionts will safeguard the humans and forest ecosystem.


Subject(s)
Camptothecin , Plants, Medicinal , Ascomycota , Ecosystem , Humans , India
9.
J Air Waste Manag Assoc ; 70(12): 1260-1267, 2020 12.
Article in English | MEDLINE | ID: mdl-32603633

ABSTRACT

The present study deals with the development of a wood assisted fungal system (WAFS) from wood chips using Trametes hirsuta to remove polycyclic aromatic hydrocarbons (PAHs) in BRW. The WAFS exhibited a 1.4-fold higher ligninolytic enzyme production than free fungi in the effluent. Further, to understand PAHs bioremediation by T. hirsuta, biodegradation along with biosorption were studied in model PAHs, phenanthrene (Phe) and benzo (a) pyrene (BaP), in the presence of synthesized rhamnolipids. The WAFS mineralized up to an average of 91.26% Phe and 87.72 % BaP along with biosorption of 12.35% Phe and 18.36 % BaP within 12 days. Thus, the addition of rhamnolipids showed 1.2-fold enhanced biodegradation. However, rhamnolipid concentrations beyond 50 ppm reduced the degradation efficiency of WAFS. Moreover, the degradation capability of total aromatic hydrocarbon (TAH) in biorefinery wastewater by WAFS is 1.8-fold higher than that of free fungi, which confirms the effectiveness of the system. Implications: Simultaneous application of white-rot fungus along with surfactant into a pollutant environment affects the microenvironment of the fungus and reduces the production of their degradative enzymes. In addition, the requirement of periodical supplement of external nutrient in the real-time matrix for the growth of white rot fungi may trigger competitive growth of indigenous microorganisms. Considering this glitch, the current work utilizes the carpenter waste for the strategical develop a wood assisted fungal system to protect the microenvironment of the fungi in the presence of rhamnolipids and contribute to their survival in real time matrix, with enhanced PAHs degradation efficiency.


Subject(s)
Benzo(a)pyrene/metabolism , Glycolipids/pharmacology , Phenanthrenes/metabolism , Polyporaceae/drug effects , Water Pollutants, Chemical/metabolism , Alcohol Oxidoreductases/metabolism , Biodegradation, Environmental , Laccase/metabolism , Peroxidases/metabolism , Polyporaceae/enzymology , Polyporaceae/metabolism , Wood
10.
IET Nanobiotechnol ; 13(3): 243-249, 2019 May.
Article in English | MEDLINE | ID: mdl-31053685

ABSTRACT

Establishing biological synthesis of nanoparticles is increasing nowadays in the field of nanotechnology. The search for an optimal source with durability, stability, capacity to withstand higher environmental conditions with excellent characteristics is yet to meet. Consequently, there is need to create an eco-friendly strategy for metal nanoparticle synthesis. One approach investigated in this review is the use of biosurfactants to enhance the synthesis biologically. In comparison with the other technologies, biosurfactants are less toxic and exhibit higher properties. This method is different from the conventional practice like physical and chemical methods. Several research studies represented that the biosurfactant influences the production of nanoparticles about 2-50 nm. In this manner, the research towards the biosurfactant has raised. This review also addressed the feasibility of biosurfactant and their benefits in the synthesis of metallic nanoparticles. The findings from this review can recommend a conceivable use of biosurfactant as a source for metal nanoparticle synthesis.


Subject(s)
Bacteria/chemistry , Metal Nanoparticles/chemistry , Surface-Active Agents/chemistry
11.
IET Nanobiotechnol ; 11(3): 213-224, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28476976

ABSTRACT

Elimination of heavy metals from contaminated streams is of prime concern due to their ability to cause toxic chaos with the metabolism of flora and fauna alike. Use of advanced nano-engineered technologies such as the innovative combination of surface chemistry, chemical engineering fundamentals and nanotechnology opens up particularly attractive horizons towards treatment of heavy metal contaminated water resources. The obtained product of surface engineered nanoadsorbent produced has successfully proven to show rapid adsorption rate and superior sorption efficiency towards the removal of a wide range of defiant heavy metal contaminants in wastewater. The use of these materials in water treatment results in markedly improved performance features like large surface area, good volumetric potential, extra shelf-lifetime, less mechanical stress, stability under operational conditions with excellent sorption behaviour, no secondary pollution, strong chelating capabilities and they are easy to recover and reuse. This review intends to serve as a one-stop-reference by bringing together all the recent research works on nanoparticles synthesis and its advantages as adsorbents in the treatment of heavy metal polluted wastewater that have so far been undertaken, thereby providing researchers with a deep insight and bridging the gap between past, present and future of the elegant nanosorbents.


Subject(s)
Metals, Heavy/isolation & purification , Nanoparticles/chemistry , Ultrafiltration/methods , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Materials Testing , Metals, Heavy/chemistry , Nanoparticles/ultrastructure , Particle Size , Porosity , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...