Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Mol Biol Plants ; 29(2): 253-262, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36819122

ABSTRACT

Hybrid rice technology offers great promise to further enhance rice production and productivity for global food security. Improving hybrid rice parental lines is the first step in developing heterotic rice hybrids. To improve resistance against blast disease, a maintainer line DRR 9B was fortified with a major broad-spectrum blast resistance gene Pi2 through marker-assisted selection. The rice blast caused by Magnaporthe oryzae is a major disease and can cause severe yield losses upto 100%. The NILs of Samba Mahsuri namely BA-23-11-89-12-168 possessing Pi2 was utilized as a donor parent. The PCR-based molecular marker tightly linked to Pi2 gene was used for the foreground selection at BC1F1 generation. The molecular marker tightly linked to the major fertility restorer gene Rf4 was used for negative selection (i.e., selection of plants possessing non fertility restoring alleles) at BC1F1 generation to identify maintainer lines. The positive plants with Rf4 gene were added to the restorer pool for restorer line development. At each stage, MAS for Pi2 coupled with stringent phenotypic selection for agro-morphological and grain quality traits were exercised. At BC1F3 generation, one hundred families were screened against blast disease at uniform blast nursery (UBN) and selected resistant lines were advanced to next generations. In the BC1F5 generation plants were subjected to agro-morphological evaluation for yield and yield-contributing traits. The selected plants at BC1F5 generation were crossed with DRR 9A to assess the maintainer ability of blast resistance lines and for further CMS line conversion for hybrid rice breeding for developing blast resistance rice hybrids.

2.
Sci Rep ; 10(1): 1101, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980666

ABSTRACT

The major constraints in hybrid rice breeding are availability of limited number of parental lines with specific desirable traits and lower frequency of restorers among elite breeding lines. The popular, high-yielding mega-rice variety Swarna, has been identified to be a partial restorer (as it has only one of major fertility restorer genes, Rf4) and hence cannot be utilized directly in the hybrid rice breeding. To convert the partial restorer to complete restorer, a cross was made between Swarna and a stable restorer KMR3R possessing Rf3 and Rf4 genes and developed BC1F5 and BC2F4 populations by marker-assisted back cross breeding (MABB). The SSR marker DRRM-RF3-10 linked to Rf3 gene located on chromosome 1, clearly distinguished restorers from partial restorers. All the improved lines of Swarna possessing Rf3 and Rf4 genes showed complete fertility restoration in test crosses with higher grain yield heterosis. Few rice hybrids developed by using converted restorers were evaluated in multi location testing under the All India Co-ordinated Rice Improvement Project (AICRIP). The results indicated that new rice hybrids expressed higher heterosis with matching grain quality attributes like Swarna. This study provides significantly novel and relevant restorers to enhance and economize future hybrid rice breeding programs.


Subject(s)
Genes, Plant/genetics , Oryza/genetics , Oryza/physiology , Plant Breeding/methods , Chromosomes, Plant/genetics , Fertility/genetics , Food Quality , Quantitative Trait Loci , Tropanes
3.
Front Plant Sci ; 7: 1530, 2016.
Article in English | MEDLINE | ID: mdl-27807437

ABSTRACT

Advanced backcross introgression lines (BILs) developed from crosses of Oryza sativa var. Swarna/O. nivara accessions were grown and evaluated for yield and related traits. Trials were conducted for consecutive three seasons in field conditions in a randomized complete block design with three replications. Data on yield traits under irrigated conditions were analyzed using the Additive Main Effect and Multiplicative Interaction (AMMI), Genotype and Genotype × Environment Interaction (GGE) and modified rank-sum statistic (YSi) for yield stability. BILs viz., G3 (14S) and G6 (166S) showed yield stability across the seasons along with high mean yield performance. G3 is early in flowering with high yield and has good grain quality and medium height, hence could be recommended for most of the irrigated locations. G6 is a late duration genotype, with strong culm strength, high grain number and panicle weight. G6 has higher yield and stability than Swarna but has Swarna grain type. Among the varieties tested DRRDhan 40 and recurrent parent Swarna showed stability for yield traits across the seasons. The component traits thousand grain weight, panicle weight, panicle length, grain number and plant height explained highest genotypic percentage over environment and interaction factors and can be prioritized to dissect stable QTLs/ genes. These lines were genotyped using microsatellite markers covering the entire rice genome and also using a set of markers linked to previously reported yield QTLs. It was observed that wild derived lines with more than 70% of recurrent parent genome were stable and showed enhanced yield levels compared to genotypes with higher donor genome introgressions.

SELECTION OF CITATIONS
SEARCH DETAIL
...