Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(16): eadl6144, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640233

ABSTRACT

Nucleoprotein (NP) is a key structural protein of influenza ribonucleoprotein complexes and is central to viral RNA packing and trafficking. NP also determines the sensitivity of influenza to myxovirus resistance protein 1 (MxA), an innate immunity factor that restricts influenza replication. A few critical MxA-resistant mutations have been identified in NP, including the highly conserved proline-283 substitution. This essential proline-283 substitution impairs influenza growth, a fitness defect that becomes particularly prominent at febrile temperature (39°C) when host chaperones are depleted. Here, we biophysically characterize proline-283 NP and serine-283 NP to test whether the fitness defect is caused by the proline-283 substitution introducing folding defects. We show that the proline-283 substitution changes the folding pathway of NP, making NP more aggregation prone during folding, but does not alter the native structure of the protein. These findings suggest that influenza has evolved to hijack host chaperones to promote the folding of otherwise biophysically incompetent viral proteins that enable innate immune system escape.


Subject(s)
Influenza, Human , Humans , Viral Core Proteins/genetics , Viral Core Proteins/chemistry , Viral Core Proteins/metabolism , RNA-Binding Proteins/metabolism , Nucleocapsid Proteins/metabolism , Myxovirus Resistance Proteins
2.
J Exp Med ; 221(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38517332

ABSTRACT

Heterozygous mutations in the TBK1 gene can cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The majority of TBK1-ALS/FTD patients carry deleterious loss-of-expression mutations, and it is still unclear which TBK1 function leads to neurodegeneration. We investigated the impact of the pathogenic TBK1 missense variant p.E696K, which does not abolish protein expression, but leads to a selective loss of TBK1 binding to the autophagy adaptor protein and TBK1 substrate optineurin. Using organelle-specific proteomics, we found that in a knock-in mouse model and human iPSC-derived motor neurons, the p.E696K mutation causes presymptomatic onset of autophagolysosomal dysfunction in neurons precipitating the accumulation of damaged lysosomes. This is followed by a progressive, age-dependent motor neuron disease. Contrary to the phenotype of mice with full Tbk1 knock-out, RIPK/TNF-α-dependent hepatic, neuronal necroptosis, and overt autoinflammation were not detected. Our in vivo results indicate autophagolysosomal dysfunction as a trigger for neurodegeneration and a promising therapeutic target in TBK1-ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Motor Neurons/pathology , Mutation , Neuroinflammatory Diseases , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
3.
bioRxiv ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37745335

ABSTRACT

Nucleoprotein (NP) is a key structural protein of influenza ribonucleoprotein complexes and is central to viral RNA packing and trafficking. In human cells, the interferon induced Myxovirus resistance protein 1 (MxA) binds to NP and restricts influenza replication. This selection pressure has caused NP to evolve a few critical MxA-resistant mutations, particularly the highly conserved Pro283 substitution. Previous work showed that this essential Pro283 substitution impairs influenza growth, and the fitness defect becomes particularly prominent at febrile temperature (39 °C) when host chaperones are depleted. Here, we biophysically characterize Pro283 NP and Ser283 NP to test if the fitness defect is owing to Pro283 substitution introducing folding defects. We show that the Pro283 substitution changes the folding pathway of NP without altering the native structure, making NP more aggregation prone during folding. These findings suggest that influenza has evolved to hijack host chaperones to promote the folding of otherwise biophysically incompetent viral proteins that enable innate immune system escape. Teaser: Pro283 substitution in flu nucleoprotein introduces folding defects, and makes influenza uniquely dependent on host chaperones.

4.
Sensors (Basel) ; 23(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36679625

ABSTRACT

This paper presents the first results of a study of the LH transition on the new spherical Globus-M2 tokamak using the Doppler backscattering (DBS) diagnostic. New data characterizing the H-mode of discharges with higher values of the plasma parameters, such as magnetic field Bt up to 0.9 T and plasma current Ip up to 450 kA, were collected and analyzed. An upgraded neutral beam injection (NBI) system was used to initiate the LH transition. DBS allows the measurement of the poloidal rotation velocity and the turbulence amplitude of the plasma. The multi-frequency DBS system installed on Globus-M2 can simultaneously collect data in different areas spanning from the separatrix to the plasma core. This allowed for the radial profiles of the rotation velocity and electric field to be calculated before and after the LH transition. In addition, the values and temporal evolution of the velocity shear were obtained. The associated turbulence suppression after the transition to the H-mode was investigated using DBS.


Subject(s)
Body Fluids , Electricity , Magnetic Fields , Plasma , Rotation
5.
Sensors (Basel) ; 22(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36502138

ABSTRACT

Filaments or blobs are well known to strongly contribute to particle and energy losses both in L- and H-mode, making them an important plasma characteristic to investigate. They are plasma structures narrowly localized across a magnetic field and stretched along magnetic field lines. In toroidal devices, their development is observed to take place in the peripheral plasma. Filament characteristics have been studied extensively over the years using various diagnostic techniques. One such diagnostic is the Doppler backscattering (DBS) method employed at the spherical tokamak Globus-M/M2. It has been observed that the DBS signal reacts to the backscattering from filaments. However, the DBS data have proven difficult to analyze, which is why modelling was undertaken using the code IPF-FD3D to understand what kind of information can be extrapolated from the signals. A circular filament was thoroughly investigated in slab geometry with a variety of characteristics studied. Apart from that, the motion of the filaments in the poloidal and radial directions was analyzed. Additionally, other shapes of filaments were presented in this work. Modelling for the real geometry of the Globus-M/M2 tokamak was performed.


Subject(s)
Cytoskeleton , Fatigue , Humans , Magnetic Fields , Motion
6.
PLoS Biol ; 20(2): e3001569, 2022 02.
Article in English | MEDLINE | ID: mdl-35180219

ABSTRACT

The sequence space accessible to evolving proteins can be enhanced by cellular chaperones that assist biophysically defective clients in navigating complex folding landscapes. It is also possible, at least in theory, for proteostasis mechanisms that promote strict quality control to greatly constrain accessible protein sequence space. Unfortunately, most efforts to understand how proteostasis mechanisms influence evolution rely on artificial inhibition or genetic knockdown of specific chaperones. The few experiments that perturb quality control pathways also generally modulate the levels of only individual quality control factors. Here, we use chemical genetic strategies to tune proteostasis networks via natural stress response pathways that regulate the levels of entire suites of chaperones and quality control mechanisms. Specifically, we upregulate the unfolded protein response (UPR) to test the hypothesis that the host endoplasmic reticulum (ER) proteostasis network shapes the sequence space accessible to human immunodeficiency virus-1 (HIV-1) envelope (Env) protein. Elucidating factors that enhance or constrain Env sequence space is critical because Env evolves extremely rapidly, yielding HIV strains with antibody- and drug-escape mutations. We find that UPR-mediated upregulation of ER proteostasis factors, particularly those controlled by the IRE1-XBP1s UPR arm, globally reduces Env mutational tolerance. Conserved, functionally important Env regions exhibit the largest decreases in mutational tolerance upon XBP1s induction. Our data indicate that this phenomenon likely reflects strict quality control endowed by XBP1s-mediated remodeling of the ER proteostasis environment. Intriguingly, and in contrast, specific regions of Env, including regions targeted by broadly neutralizing antibodies, display enhanced mutational tolerance when XBP1s is induced, hinting at a role for host proteostasis network hijacking in potentiating antibody escape. These observations reveal a key function for proteostasis networks in decreasing instead of expanding the sequence space accessible to client proteins, while also demonstrating that the host ER proteostasis network profoundly shapes the mutational tolerance of Env in ways that could have important consequences for HIV adaptation.


Subject(s)
HIV Infections , Proteostasis , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , HIV Infections/metabolism , Humans , Molecular Chaperones/metabolism , Unfolded Protein Response
7.
ACS Infect Dis ; 6(7): 1659-1666, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32502335

ABSTRACT

Host protein folding stress responses can play important roles in RNA virus replication and evolution. Prior work suggested a complicated interplay between the cytosolic proteostasis stress response, controlled by the transcriptional master regulator heat shock factor 1 (HSF1), and human immunodeficiency virus-1 (HIV-1). We sought to uncouple HSF1 transcription factor activity from cytotoxic proteostasis stress and thereby better elucidate the proposed role(s) of HSF1 in the HIV-1 lifecycle. To achieve this objective, we used chemical genetic, stress-independent control of HSF1 activity to establish whether and how HSF1 influences HIV-1 replication. Stress-independent HSF1 induction decreased both the total quantity and infectivity of HIV-1 virions. Moreover, HIV-1 was unable to escape HSF1-mediated restriction over the course of several serial passages. These results clarify the interplay between the host's heat shock response and HIV-1 infection and motivate continued investigation of chaperones as potential antiviral therapeutic targets.


Subject(s)
Heat-Shock Response , Proteostasis , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Humans , Molecular Chaperones , Virus Replication
8.
PLoS Biol ; 16(9): e3000008, 2018 09.
Article in English | MEDLINE | ID: mdl-30222731

ABSTRACT

The threat of viral pandemics demands a comprehensive understanding of evolution at the host-pathogen interface. Here, we show that the accessibility of adaptive mutations in influenza nucleoprotein at fever-like temperatures is mediated by host chaperones. Particularly noteworthy, we observe that the Pro283 nucleoprotein variant, which (1) is conserved across human influenza strains, (2) confers resistance to the Myxovirus resistance protein A (MxA) restriction factor, and (3) critically contributed to adaptation to humans in the 1918 pandemic influenza strain, is rendered unfit by heat shock factor 1 inhibition-mediated host chaperone depletion at febrile temperatures. This fitness loss is due to biophysical defects that chaperones are unavailable to address when heat shock factor 1 is inhibited. Thus, influenza subverts host chaperones to uncouple the biophysically deleterious consequences of viral protein variants from the benefits of immune escape. In summary, host proteostasis plays a central role in shaping influenza adaptation, with implications for the evolution of other viruses, for viral host switching, and for antiviral drug development.


Subject(s)
Adaptation, Physiological , Host-Pathogen Interactions , Immune Evasion , Immune System/virology , Immunity, Innate , Molecular Chaperones/metabolism , Orthomyxoviridae/immunology , Amino Acid Sequence , Animals , Biophysical Phenomena , DNA Mutational Analysis , Dogs , Humans , Madin Darby Canine Kidney Cells , Models, Biological , Myxovirus Resistance Proteins/metabolism , Nucleoproteins/chemistry , Protein Structure, Secondary , Temperature , Viral Proteins/chemistry
9.
Elife ; 62017 09 26.
Article in English | MEDLINE | ID: mdl-28949290

ABSTRACT

Predicting and constraining RNA virus evolution require understanding the molecular factors that define the mutational landscape accessible to these pathogens. RNA viruses typically have high mutation rates, resulting in frequent production of protein variants with compromised biophysical properties. Their evolution is necessarily constrained by the consequent challenge to protein folding and function. We hypothesized that host proteostasis mechanisms may be significant determinants of the fitness of viral protein variants, serving as a critical force shaping viral evolution. Here, we test that hypothesis by propagating influenza in host cells displaying chemically-controlled, divergent proteostasis environments. We find that both the nature of selection on the influenza genome and the accessibility of specific mutational trajectories are significantly impacted by host proteostasis. These findings provide new insights into features of host-pathogen interactions that shape viral evolution, and into the potential design of host proteostasis-targeted antiviral therapeutics that are refractory to resistance.


Subject(s)
Genetic Fitness , Host-Pathogen Interactions , Influenza A Virus, H3N2 Subtype/genetics , Mutation , Proteostasis , Viral Proteins/genetics , Animals , Dogs , Evolution, Molecular , Influenza A Virus, H3N2 Subtype/physiology , Madin Darby Canine Kidney Cells , Selection, Genetic , Viral Proteins/metabolism
10.
Curr Top Med Chem ; 15(13): 1162-78, 2015.
Article in English | MEDLINE | ID: mdl-25858134

ABSTRACT

The combined efforts of chemistry, nanotechnology, and spectroscopy led to the development of self-assembled fluorescent DNA nanostructures, an inexhaustible source of refined and bizarre tools and powerful techniques for research and diagnostic applications. This multidisciplinary area has tremendous prospects for science and technology.


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Molecular Probes/chemistry , Alkanesulfonates/chemistry , Azo Compounds/chemistry , Base Pairing , Dendrimers/chemistry , Fluorescence Resonance Energy Transfer , Humans , Molecular Probes/chemical synthesis , Nanotechnology/methods , Nucleic Acid Conformation , Nucleic Acid Hybridization
SELECTION OF CITATIONS
SEARCH DETAIL
...