Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
3.
bioRxiv ; 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37609216

ABSTRACT

The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature as a primary hallmark of cancer. Developing vasculature is difficult to evaluate in vivo but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an on chip approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of metastatic renal cell carcinoma spheroids and endothelial cells in a 3D environment. Our model permitted real-time, high-resolution observation and assessment of tumor-induced angiogenesis, where endothelial cells sprout towards the tumor and mimic a vascular network. Bevacizumab, an angiogenic inhibitor, disrupted interactions between vessels and tumors, destroying the vascular network. The on chip approach enabled assessment of endothelial cell biology, vessel's functionality, drug delivery, and molecular expression of PSMA. Finally, observations in the vascularized tumor on chip permitted direct and conclusive quantification of this therapy in weeks as opposed to months in a comparable animal model. Teaser: Vascularized tumor on microfluidic chip provides opportunity to study targeted therapies and improves preclinical drug discovery.

4.
Mar Pollut Bull ; 194(Pt B): 115414, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37634316

ABSTRACT

We study physical mechanisms of the Tumen River water transport in the area of the Posyet Bay (Peter the Great Bay, Sea of Japan). This study is based on the satellite and in situ measurements, and numerical simulation of advection of river water by the current velocity simulated by Regional Ocean Model System (ROMS). The importance of this study is in identification of the reasons of the transport of pollutants into the area of the Far Eastern Marine Reserve. The results of the study showed that such reasons are wind currents and mesoscale cyclonic eddies. These eddies were originally detected on satellite imagery and CTD and bio-optical measurements. The anomalies in the form of spots of the chlorophyll a (CHL) increased concentration were detected on satellite images in fall 2009. The oceanographic sections of CTD and bio-optical measurements through the anomalies show that they are cyclonic eddies. These eddies consist of two cores - upper and lower. The upper core is filled with river waters with low salinity, high values of CHL and colored dissolved organic matter content (CDOM). The lower core is filled with cold saline waters. The ROMS results show that eddies are generated as a result of symmetrical and centrifugal instabilities.


Subject(s)
Bays , Rivers , Chlorophyll A , Fresh Water , Computer Simulation
5.
Nat Biomed Eng ; 7(8): 1028-1039, 2023 08.
Article in English | MEDLINE | ID: mdl-37400715

ABSTRACT

In conventional positron emission tomography (PET), only one radiotracer can be imaged at a time, because all PET isotopes produce the same two 511 keV annihilation photons. Here we describe an image reconstruction method for the simultaneous in vivo imaging of two PET tracers and thereby the independent quantification of two molecular signals. This method of multiplexed PET imaging leverages the 350-700 keV range to maximize the capture of 511 keV annihilation photons and prompt γ-ray emission in the same energy window, hence eliminating the need for energy discrimination during reconstruction or for signal separation beforehand. We used multiplexed PET to track, in mice with subcutaneous tumours, the biodistributions of intravenously injected [124I]I-trametinib and 2-deoxy-2-[18F]fluoro-D-glucose, [124I]I-trametinib and its nanoparticle carrier [89Zr]Zr-ferumoxytol, and the prostate-specific membrane antigen (PSMA) and infused PSMA-targeted chimaeric antigen receptor T cells after the systemic administration of [68Ga]Ga-PSMA-11 and [124I]I. Multiplexed PET provides more information depth, gives new uses to prompt γ-ray-emitting isotopes, reduces radiation burden by omitting the need for an additional computed-tomography scan and can be implemented on preclinical and clinical systems without any modifications in hardware or image acquisition software.


Subject(s)
Electrons , Positron-Emission Tomography , Male , Animals , Mice , Positron-Emission Tomography/methods , Iodine Radioisotopes , Tomography, X-Ray Computed
6.
Prostate ; 83(12): 1176-1185, 2023 09.
Article in English | MEDLINE | ID: mdl-37211857

ABSTRACT

BACKGROUND: Male dogs can develop spontaneous prostate cancer, which is similar physiologically to human disease. Recently, Tweedle and coworkers have developed an orthotopic canine prostate model allowing implanted tumors and therapeutic agents to be tested in a more translational large animal model. We used the canine model to evaluate prostate-specific membrane antigen (PSMA)-targeted gold nanoparticles as a theranostic approach for fluorescence (FL) imaging and photodynamic therapy (PDT) of early stage prostate cancer. METHODS: Dogs (four in total) were immunosuppressed with a cyclosporine-based immunosuppressant regimen and their prostate glands were injected with Ace-1-hPSMA cells using transabdominal ultrasound (US) guidance. Intraprostatic tumors grew in 4-5 weeks and were monitored by ultrasound (US). When tumors reached an appropriate size, dogs were injected intravenously (iv) with PSMA-targeted nano agents (AuNPs-Pc158) and underwent surgery 24 h later to expose the prostate tumors for FL imaging and PDT. Ex vivo FL imaging and histopathological studies were performed to confirm PDT efficacy. RESULTS: All dogs had tumor growth in the prostate gland as revealed by US. Twenty-four hours after injection of PSMA-targeted nano agents (AuNPs-Pc158), the tumors were imaged using a Curadel FL imaging device. While normal prostate tissue had minimal fluorescent signal, the prostate tumors had significantly increased FL. PDT was activated by irradiating specific fluorescent tumor areas with laser light (672 nm). PDT bleached the FL signal, while fluorescent signals from the other unexposed tumor tissues were unaffected. Histological analysis of tumors and adjacent prostate revealed that PDT damaged the irradiated areas to a depth of 1-2 mms with the presence of necrosis, hemorrhage, secondary inflammation, and occasional focal thrombosis. The nonirradiated areas showed no visible damages by PDT. CONCLUSION: We have successfully established a PSMA-expressing canine orthotopic prostate tumor model and used the model to evaluate the PSMA-targeted nano agents (AuNPs-Pc158) in the application of FL imaging and PDT. It was demonstrated that the nano agents allowed visualization of the cancer cells and enabled their destruction when they were irradiated with a specific wavelength of light.


Subject(s)
Antineoplastic Agents , Metal Nanoparticles , Photochemotherapy , Prostatic Neoplasms , Male , Humans , Dogs , Animals , Gold/therapeutic use , Photochemotherapy/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostate/diagnostic imaging , Prostate/pathology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor
7.
Neurocrit Care ; 38(2): 407-413, 2023 04.
Article in English | MEDLINE | ID: mdl-36510107

ABSTRACT

BACKGROUND: Extracorporeal membrane oxygenation has a high risk of acute brain injury and resultant mortality. Transcranial Doppler characterizes cerebral hemodynamics in real time, but limited data exist on its interpretation in ECMO. Here, we report TCD mean flow velocity and pulsatility index in a large ECMO population. METHODS: This was a prospective cohort study at a tertiary care center. The patients were adults on venoarterial ECMO or venovenous ECMO undergoing TCD studies. RESULTS: A total of 135 patients underwent a total of 237 TCD studies while on VA-ECMO (n = 95, 70.3%) or VV-ECMO (n = 40, 29.6%). MFVs were captured reliably (approximately 90%) and were similar to a published healthy cohort in all vessels except the internal carotid artery. Presence of a recordable PI was strongly associated with ECMO mode (57% in VA vs. 95% in VV, p < 0.001). Absence of TCD pulsatility was associated with intraparenchymal hemorrhage (14.7 vs. 1.6%, p = 0.03) in VA-ECMO patients. CONCLUSIONS: Transcranial Doppler analysis in a single-center cohort of VA-ECMO and VV-ECMO patients demonstrates similar MFVs and PIs. Absence of PIs was associated with a higher frequency of intraparenchymal hemorrhage and a composite bleeding event. However, cautious interpretation and external validation is necessary for these findings with a multicenter study with a larger sample size.


Subject(s)
Brain Injuries , Extracorporeal Membrane Oxygenation , Adult , Humans , Prospective Studies , Hemodynamics , Ultrasonography, Doppler, Transcranial
8.
JTCVS Tech ; 15: 111-122, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36276670

ABSTRACT

Objective: Extracorporeal membrane oxygenation (ECMO) carries a high morbidity of acute brain injury (ABI) with resultant mortality increase. Transcranial Doppler (TCD) allows real-time characterization of regional cerebral hemodynamics, but limited data exist on the interpretation of microembolic signals (MES) in ECMO. Methods: This prospective cohort study was conducted at a single tertiary care center, November 2017 through February 2022, and included all adult patients receiving venoarterial (VA) and venovenous (VV) ECMO undergoing TCD examinations, which all included MES monitoring. Results: Of 145 patients on ECMO who underwent at least 1 TCD examination, 100 (68.9%) patients on VA-ECMO received 187 examinations whereas 45 (31.1%) patients on VV-ECMO received 65 examinations (P = .81). MES were observed in 35 (35.0%) patients on VA-ECMO and 2 (4.7%) patients on VV-ECMO (P < .001), corresponding to 46 (24.6%) and 2 (3.1%) TCD examinations, respectively. MES were present in 29.4% of patients on VA-ECMO without additional cardiac support, compared with 38.1% with intra-aortic balloon pump and 57.1% with left ventricular assist device, but these differences were not statistically significant (P = .39; P = .20, respectively). Presence or number of MES was not associated with VA-ECMO cannulation mode (23.4% MES presence in peripheral cannulation vs 25.8% in central cannulation, P = .80). In both VA- and VV-ECMO, MES presence or number was not associated with presence of clot or fibrin in the ECMO circuit or with any studied hemodynamic, laboratory, or ECMO parameters at the time of TCD. ABI occurred in 38% and 31.1% of patients on VA- and VV-ECMO, respectively. In multivariable logistic regression analyses, neither ABI nor a composite outcome of arterial thromboembolic events was associated with presence or number of MES in VA- ECMO. Conclusions: TCD analysis in a large cohort of patients on ECMO demonstrates a significant number of MES, especially in patients on VA-ECMO with intra-aortic balloon pump, and/or left ventricular assist device. However, clinical associations and significance of TCD MES remain unresolved and warrant further correlation with systematic imaging and long-term neurologic follow-up.

9.
J Immunother Cancer ; 10(9)2022 09.
Article in English | MEDLINE | ID: mdl-36137649

ABSTRACT

Cellular immunotherapies have emerged as a successful therapeutic approach to fight a wide range of human diseases, including cancer. However, responses are limited to few patients and tumor types. An in-depth understanding of the complexity and dynamics of cellular immunotherapeutics, including what is behind their success and failure in a patient, the role of other immune cell types and molecular biomarkers in determining a response, is now paramount. As the cellular immunotherapy arsenal expands, whole-body non-invasive molecular imaging can shed a light on their in vivo fate and contribute to the reliable assessment of treatment outcome and prediction of therapeutic response. In this review, we outline the non-invasive strategies that can be tailored toward the molecular imaging of cellular immunotherapies and immune-related components, with a focus on those that have been extensively tested preclinically and are currently under clinical development or have already entered the clinical trial phase. We also provide a critical appraisal on the current role and consolidation of molecular imaging into clinical practice.


Subject(s)
Immunotherapy , Neoplasms , Biomarkers, Tumor/metabolism , Humans , Immunotherapy/methods , Neoplasms/diagnostic imaging , Neoplasms/therapy , Treatment Outcome
11.
Mol Ther Oncolytics ; 22: 355-367, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34553024

ABSTRACT

Success in solid tumor chimeric antigen receptor (CAR) T-cell therapy requires overcoming several barriers, including lung sequestration, inefficient accumulation within the tumor, and target-antigen heterogeneity. Understanding CAR T-cell kinetics can assist in the interpretation of therapy response and limitations and thereby facilitate developing successful strategies to treat solid tumors. As T-cell therapy response varies across metastatic sites, the assessment of CAR T-cell kinetics by peripheral blood analysis or a single-site tumor biopsy is inadequate for interpretation of therapy response. The use of tumor imaging alone has also proven to be insufficient to interpret response to therapy. To address these limitations, we conducted dual tumor and T-cell imaging by use of a bioluminescent reporter and positron emission tomography in clinically relevant mouse models of pleural mesothelioma and non-small cell lung cancer. We observed that the mode of delivery of T cells (systemic versus regional), T-cell activation status (presence or absence of antigen-expressing tumor), and tumor-antigen expression heterogeneity influence T-cell kinetics. The observations from our study underscore the need to identify and develop a T-cell reporter-in addition to standard parameters of tumor imaging and antitumor efficacy-that can be used for repeat imaging without compromising the efficacy of CAR T cells in vivo.

12.
Clin Case Rep ; 9(7): e04409, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34257979

ABSTRACT

Worsening of clinical symptoms after COVID-19 infection and misregulation of CD4 and CD8 T-cell numbers may be revealed in PD patients. Immunological changes may be a source of clinical worsening of the patient.

13.
Mol Ther Oncolytics ; 21: 15-22, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33851009

ABSTRACT

Bioluminescence reporter gene imaging is a robust, high-throughput imaging modality that is useful for tracking cells and monitoring biological processes, both in cell culture and in small animals. We introduced and characterized a novel bioluminescence reporter-membrane-anchored Cypridina luciferase (maCLuc)-paired with a unique vargulin substrate. This luciferase-substrate pair has no cross-reactivity with established d-luciferin- or coelenterazine-based luciferase reporters. We compare maCLuc with several established luciferase-based reporter systems (firefly, click beetle, Renilla, and Gaussia luciferases), using both in vitro and in vivo models. We demonstrate the different imaging characteristics of these reporter systems, which allow for multiplexed-luciferase imaging of 3 and 4 separate targets concurrently in the same animal within 24 h. The imaging paradigms described here can be directly applied for simultaneous in vivo monitoring of multiple cell populations, the activity of selected signal transduction pathways, or a combination of both constitutive and inducible reporter imaging.

14.
Cytotherapy ; 23(9): 757-773, 2021 09.
Article in English | MEDLINE | ID: mdl-33832818

ABSTRACT

Cell-based therapies have been making great advances toward clinical reality. Despite the increase in trial activity, few therapies have successfully navigated late-phase clinical trials and received market authorization. One possible explanation for this is that additional tools and technologies to enable their development have only recently become available. To support the safety evaluation of cell therapies, the Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee, a multisector collaborative committee, polled the attendees of the 2017 International Society for Cell & Gene Therapy conference in London, UK, to understand the gaps and needs that cell therapy developers have encountered regarding safety evaluations in vivo. The goal of the survey was to collect information to inform stakeholders of areas of interest that can help ensure the safe use of cellular therapeutics in the clinic. This review is a response to the cellular imaging interests of those respondents. The authors offer a brief overview of available technologies and then highlight the areas of interest from the survey by describing how imaging technologies can meet those needs. The areas of interest include imaging of cells over time, sensitivity of imaging modalities, ability to quantify cells, imaging cellular survival and differentiation and safety concerns around adding imaging agents to cellular therapy protocols. The Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee believes that the ability to understand therapeutic cell fate is vital for determining and understanding cell therapy efficacy and safety and offers this review to aid in those needs. An aim of this article is to share the available imaging technologies with the cell therapy community to demonstrate how these technologies can accomplish unmet needs throughout the translational process and strengthen the understanding of cellular therapeutics.

15.
Mol Ther Oncolytics ; 20: 447-458, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33718593

ABSTRACT

Several types of gene- and cell-based therapeutics are now emerging in the cancer immunotherapy, transplantation, and regenerative medicine landscapes. Radionuclear-based imaging can be used as a molecular imaging tool for repetitive and non-invasive visualization as well as in vivo monitoring of therapy success. In this review, we discuss the principles of nuclear-based imaging and provide a comprehensive overview of its application in gene and cell therapy. This review aims to inform investigators in the biomedical field as well as clinicians on the state of the art of nuclear imaging, from probe design to available radiopharmaceuticals and advances of direct (probe-based) and indirect (transgene-based) strategies in both preclinical and clinical settings. Notably, as the nuclear-based imaging toolbox is continuously expanding, it will be increasingly incorporated into the clinical setting where the distribution, targeting, and persistence of a new generation of therapeutics can be imaged and ultimately guide therapeutic decisions.

16.
Biomaterials ; 269: 120630, 2021 02.
Article in English | MEDLINE | ID: mdl-33395580

ABSTRACT

Adoptive cell transfer of targeted chimeric antigen receptor (CAR) T cells has emerged as a highly promising cancer therapy. The pharmacodynamic action or CAR T cells is closely related to their pharmacokinetic profile; because of this as well as the risk of non-specific action, it is important to monitor their biodistribution and fate following infusion. To this end, we developed a dual-modal PET/near infrared fluorescent (NIRF) nanoparticle-based imaging agent for non-genomic labeling of human CAR T cells. Since the PET/NIRF nanoparticles did not affect cell viability or cytotoxic functionality and enabled long-term whole-body CAR T cell tracking using PET and NIRF in an ovarian peritoneal carcinomatosis model, this platform is a viable imaging technology to be applied in other cancer models.


Subject(s)
Cell Tracking , Immunotherapy, Adoptive , Cell Line, Tumor , Humans , Positron-Emission Tomography , Tissue Distribution
17.
Clin Cancer Res ; 27(4): 911-912, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33328345

ABSTRACT

Chimeric antigen receptor (CAR)-T cell therapy has generated unprecedented advances in the treatment of hematologic cancers, but readily translatable imaging approaches to visualize the in vivo dynamics of CAR-T cells are lacking. Noninvasive PET imaging is the ideal tool to monitor CAR-T cells.See related article by Simonetta et al., p. 1058.


Subject(s)
Hematologic Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy , Immunotherapy, Adoptive , Receptors, Chimeric Antigen/genetics , T-Lymphocytes
18.
Maedica (Bucur) ; 16(4): 707-712, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35261675

ABSTRACT

Introduction: There are many phenotypic variants of chronic inflammatory demyelinating polyneuropathy. Methods:An Ancient Greek aryvallos painted c. 480-450 BC, now on display at the Louvre museum, was meticulously studied regarding its painted surface, which presents an outpatient clinic in Ancient Greece. Other Ancient Greek works of art presenting medical activities have been also evaluated in order to reach informed conclusions regarding medical practice of that period. Case report: We report a rare case of the distal phenotype of chronic inflammatory demyelinating polyneuropathy with a subacute onset and rapidly progressive course. A 58-year-old male had distal, symmetric, predominantly motor impairment without ataxia and tremor. After a three-month duration of the disease, the patient had already complete paresis of the feet with absence of compound muscle action potentials (CMAPs) over the feet and lower leg muscles, but preserved proprioception and sural sensory nerve action potential. Cerebrospinal fluid protein level was elevated to 3.4 g/L. Demyelinating neuropathy was predominantly in the proximal segment of the nerves. Low amplitude of CMAPs was recorded hardly over the vastus medialis and rectus femoris muscles, while weakness and atrophy in these muscles were not. The patient was refractory to treatment. He died three years after disease onset. Conclusion:We described a new clinical-electrophysiological phenomenon, which was characterized as a decrease in the evoked electrical excitability at the femoral nerve stimulation site (decreased CMAP), while the natural physiological conduction of the impulse from the motor neuron to the muscle was not blocked (preserved muscle strength).

19.
Blood Cancer Discov ; 1(2): 146-154, 2020 09.
Article in English | MEDLINE | ID: mdl-33089218

ABSTRACT

CAR T-cell therapy for multiple myeloma (MM) targeting B-cell maturation antigen (TNFRSF17; BCMA) induces high overall response rates; however, relapse occurs commonly. Implicated in relapse is a reservoir of MM if cells lacking sufficient BCMA surface expression (antigen escape). We demonstrate that simultaneous targeting of an additional antigen-here, G protein-coupled receptor class-C group-5 member-D (GPRC5D)-can prevent BCMA escape-mediated relapse in a model of MM. To identify an optimal approach, we compare subtherapeutic doses of different forms of dual-targeted cellular therapy. These include (1) parallel-produced and pooled mono-targeted CAR T-cells, (2) bicistronic constructs expressing distinct CARs from a single vector, and (3) a dual-scFv "single-stalk" CAR design. When targeting BCMA-negative disease, bicistronic and pooled approaches had the highest efficacy, whereas for dual-antigen-expressing disease, the bicistronic approach was more efficacious than the pooled approach. Mechanistically, expressing two CARs on a single cell enhanced the strength of CAR T-cell/target cell interactions.


Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma , B-Cell Maturation Antigen/genetics , Humans , Multiple Myeloma/genetics , Neoplasm Recurrence, Local , Receptors, G-Protein-Coupled/genetics
20.
Mol Ther Oncolytics ; 18: 382-395, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32913888

ABSTRACT

To enhance human prostate-specific membrane antigen (hPSMA)-specific chimeric antigen receptor (CAR) T cell therapy in a hPSMA+ MyC-CaP tumor model, we studied and imaged the effect of lactate dehydrogenase A (LDH-A) depletion on the tumor microenvironment (TME) and tumor progression. Effective LDH-A short hairpin RNA (shRNA) knockdown (KD) was achieved in MyC-CaP:hPSMA+ Renilla luciferase (RLuc)-internal ribosome entry site (IRES)-GFP tumor cells, and changes in tumor cell metabolism and in the TME were monitored. LDH-A downregulation significantly inhibited cell proliferation and subcutaneous tumor growth compared to control cells and tumors. However, total tumor lactate concentration did not differ significantly between LDH-A knockdown and control tumors, reflecting the lower vascularity, blood flow, and clearance of lactate from LDH-A knockdown tumors. Comparing treatment responses of MyC-CaP tumors with LDH-A depletion and/or anti-hPSMA CAR T cells showed that the dominant effect on tumor growth was LDH-A depletion. With anti-hPSMA CAR T cell treatment, tumor growth was significantly slower when combined with tumor LDH-A depletion and compared to control tumor growth (p < 0.0001). The lack of a complete tumor response in our animal model can be explained in part by (1) the lower activity of human CAR T cells against hPSMA-expressing murine tumors in a murine host, and (2) a loss of hPSMA antigen from the tumor cell surface in progressive generations of tumor cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...