Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res Commun ; 48(1): 153-164, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37594698

ABSTRACT

Although the herbicide glyphosate is widely used globally and considered safe, more evidence of its adverse effects on animals and humans is accumulating. The present investigation was aimed at evaluating the impact of different glyphosate concentrations on zootechnical characteristics and clinical, biochemical and immunological blood parameters in Ross 308 broiler chickens. Four groups were employed, including untreated control and three experimental groups fed diets enriched with glyphosate at doses of 10, 20 and 100 ppm that conformed to 0.5, 1 and 5 maximum residue limits, respectively. The results showed that glyphosate is a stress factor triggering a multifaceted effect on important blood parameters (e.g., white blood cell and phagocytic counts), which was shown for the first time in the experiments involving productive meat-type poultry. It was first revealed that glyphosate-induced changes in blood parameters may be related to a negative impact on the zootechnical characteristics including the digestive tract organ development and body weight gain. The study findings suggested that exposure to glyphosate in the feedstuffs can adversely affect the physiological condition and productivity of broilers.


Subject(s)
Glyphosate , Herbicides , Humans , Animals , Chickens/physiology , Herbicides/toxicity , Dietary Exposure , Animal Nutritional Physiological Phenomena , Diet/veterinary , Animal Feed/analysis , Dietary Supplements
2.
J Appl Microbiol ; 134(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37715326

ABSTRACT

AIMS: Gut bacteria play an important role in poultry nutrition and the immune defense system. Changes in the intestinal microbiome affect the physiological state, metabolism, and innate immunity of poultry. The present study aimed to characterize age-related changes in the gastrointestinal tract microflora in broiler chickens, depending on supplementation of the diet with the in-feed antibiotic Stafac® 110 and a Bacillus subtilis strain-based probiotic. METHODS AND RESULTS: In this regard, a comprehensive analysis of the taxonomic structure of the microbial community in the gastrointestinal tract (GIT) of broiler chickens was carried out using a molecular genetic technique of the terminal-restriction fragment length polymorphism analysis and taking into account age dynamics and feeding treatment. A beneficial effect on the microbiological composition and body weight of broilers was observed when using the antibiotic and probiotic in compound feeds. Different bacterial communities were revealed in the duodenum and cecum, and their positive impact on broiler growth was established. The results obtained shed light on the formation of GIT microflora of broiler chickens during the growing period and its changes in response to the use of the antibiotic and the probiotic. CONCLUSIONS: We suggest that the implementation of the tested in-feed antibiotic and probiotic can be beneficial in regulating the intestinal microflora microbiological processes in the GIT and improving the feeding efficiency and productivity of broiler chickens.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Chickens , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...