Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 190(4): 116, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36877256

ABSTRACT

A biomimetic bilayer lipid membrane supported MXene based biosensor is reported for electrochemical hybridization detection of the most prevalent and potential BC biomarker BRCA1. 2D MXene nanosheet-anchored gold nanoparticle-decorated biomimetic bilayer lipid membrane (AuNP@BLM) biosensor is used for the attachment of thiolated single-stranded DNA (HS-ssDNA) targeting hybridization detection. The interaction of biomimetic bilayer lipid membrane with 2D MXene nanosheets is explored in this work for the first time. The synergistic combination of MXene and AuNP@BLM has proven to efficiently improve the detection signal to several folds. The sensor provides hybridization signals only to the complementary DNA (cDNA) sequence with a linearity range 10 zM to 1 µM and LOD of 1 zM without the need of any further amplification. The specificity of the biosensor is validated using non-complementary (ncDNA) and double base mis-match oligonucleotide DNA (dmmDNA) sequences. The sensor successfully distinguishes the signal for different target DNAs with good reproducibility indicated by the RSD value of 4.9%. Hence, we envision that the reported biosensor can be used to construct efficient diagnostic point-of-care tools based on molecular affinity interactions.


Subject(s)
Genes, BRCA1 , Metal Nanoparticles , Biomimetics , Gold , Reproducibility of Results , DNA, Complementary , DNA, Single-Stranded , Lipids
2.
Nanoscale Adv ; 2(8): 3209-3221, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-36134298

ABSTRACT

Porous iron oxide nanostructures have attracted increasing attention due to their potential biomedical applications as nanocarriers for cancer and many other therapies as well as minimal toxicity. Herbal anti-cancer agent thymoquinone loaded on Fe3O4 nanoparticles is envisaged to offer solution towards cancer treatment. The purpose of the present study was to investigate the efficacy of thymoquinone-loaded PVPylated Fe3O4 magnetic nanoparticles (TQ-PVP-Fe3O4 NPs) against triple-negative breast cancer (TNBC) cells. The porous PVPylated Fe3O4 NPs were prepared by a simple solvothermal process, whereas the thymoquinone drug was loaded via the nanoprecipitation method. Fourier transform infrared (FTIR) spectroscopic analysis confirmed the molecular drug loading, and surface morphological observation further confirmed this. The quantity of thymoquinone adsorbed onto the porous PVPylated Fe3O4 NPs was studied by thermogravimetric analysis (TGA). The positive surface charge of TQ-PVP-Fe3O4 NPs facilitates the interaction of the NPs with cancer (MDA-MB-231) cells to enhance the biological functions. In addition, the anticancer potential of NPs involving cytotoxicity, apoptosis induction, reactive oxygen species (ROS) generation, and changes in the mitochondrial membrane potential (ΔΨ m) of TNBC cells was evaluated. TQ-PVP-Fe3O4 NP-treated cells effectively increased the ROS levels leading to cellular apoptosis. The study shows that the synthesized TQ-PVP-Fe3O4 NPs display pH-dependent drug release in the cellular environment to induce apoptosis-related cell death in TNBC cells. Hence, the prepared TQ-PVP-Fe3O4 NPs may be a suitable drug formulation for anticancer therapy.

3.
J Mater Chem B ; 6(21): 3555-3570, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-32254451

ABSTRACT

In this article, we report the validation of cancer nanotherapy for the treatment of cancers using quercetin (Qtn). Much attention has been paid to the use of nanoparticles (NPs) to deliver drugs of interest in vitro/in vivo. Highly developed NPs-based nano drug delivery systems (NDDS) are an attractive approach to target cancer cell apoptosis, which is related to the onset and progression of cancer. Conventional chemotherapy has some notable drawbacks, such as lack of specificity, requirement of high drug doses, adverse effects, and gradual development of multidrug resistance (MDR), that decrease the efficacy of cancer therapy. To overcome these challenges of chemotherapy, the achievement of high drug loading in combination with low leakage at physiological pH, minimal toxicity toward healthy cells, and tunable controlled release at the site of action is an ongoing challenge. To assist drug delivery, we have prepared PVPylated-TiO2NPs containing Qtn with high loading efficiency (26.6% w/w) as a NDDS. The Qtn-PVPylated-TiO2NPs are uptaken via endocytosis by cancer cells and can generate intracellular reactive oxygen species (ROS) in order to increase mitochondrial membrane potential loss (Δψm) and enable release of cytochrome-c, followed by dysregulation of Bcl-2 into the cytosol and activation of caspase-3 to induce cancer cell apoptosis. These novel nanocombinations can be utilized to improve cancer nanotherapy by induction of apoptosis in vitro. Analysis at the molecular level revealed that the Qtn-PVPylated-TiO2NPs nanocombinations induced Δψm-mediated apoptotic signaling pathways. Overall, this study demonstrated that careful design of non-toxic nanocarriers for cancer nanotherapy can yield affordable NDDS.

4.
J Mater Chem B ; 6(27): 4539, 2018 Jul 21.
Article in English | MEDLINE | ID: mdl-32254671

ABSTRACT

Correction for 'Mitochondrial dysfunction-induced apoptosis in breast carcinoma cells through a pH-dependent intracellular quercetin NDDS of PVPylated-TiO2NPs' by Thondhi Ponraj et al., J. Mater. Chem. B, 2018, 6, 3555-3570.

5.
Article in English | MEDLINE | ID: mdl-29942368

ABSTRACT

Morphology controlled hydroxyapatite (HAp) nanostructures play a vital role in biomedical engineering, tissue regenerative medicine, biosensors, chemotherapeutic applications, environmental remediation, etc. The present work investigates the influence of temperature, pH and time on the growth of HAp nanostructures using a simple, cost effective and surfactant free chemical approach. The obtained HAp nanostructures were systematically investigated by analytical techniques such as XRD, FESEM, EDX, FTIR and Raman spectroscopy. The XRD analysis showed that the hexagonal structure of the hydroxyapatite and average crystallite size was estimated from this analysis. The electron microscopic analysis confirmed the different morphologies obtained by varying the synthesis parameters such as temperature, pH and time. The elemental composition was determined through EDS analysis. FTIR and Raman spectroscopic analysis confirmed the presence of functional groups and the purity and crystallinity of the samples. The biocompatibility and adhesion nature of samples was examined with mouse preosteoblast cells. The obtained results demonstrated good biocompatibility and excellent focal adhesion.

SELECTION OF CITATIONS
SEARCH DETAIL
...