Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ISME Commun ; 4(1): ycae005, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38439943

ABSTRACT

Insects typically acquire their beneficial microbes early in development. Endosymbionts housed intracellularly are commonly integrated during oogenesis or embryogenesis, whereas extracellular microbes are only known to be acquired after hatching by immature instars such as larvae or nymphs. Here, however, we report on an extracellular symbiont that colonizes its host during embryo development. Tortoise beetles (Chrysomelidae: Cassidinae) host their digestive bacterial symbiont Stammera extracellularly within foregut symbiotic organs and in ovary-associated glands to ensure its vertical transmission. We outline the initial stages of symbiont colonization and observe that although the foregut symbiotic organs develop 3 days prior to larval emergence, they remain empty until the final 24 h of embryo development. Infection by Stammera occurs during that timeframe and prior to hatching. By experimentally manipulating symbiont availability to embryos in the egg, we describe a 12-h developmental window governing colonization by Stammera. Symbiotic organs form normally in aposymbiotic larvae, demonstrating that these Stammera-bearing structures develop autonomously. In adults, the foregut symbiotic organs are already colonized following metamorphosis and host a stable Stammera population to facilitate folivory. The ovary-associated glands, however, initially lack Stammera. Symbiont abundance subsequently increases within these transmission organs, thereby ensuring sufficient titers at the onset of oviposition ~29 days following metamorphosis. Collectively, our findings reveal that Stammera colonization precedes larval emergence, where its proliferation is eventually decoupled in adult beetles to match the nutritional and reproductive requirements of its host.

2.
Curr Biol ; 34(8): 1621-1634.e9, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38377997

ABSTRACT

Timing the acquisition of a beneficial microbe relative to the evolutionary history of its host can shed light on the adaptive impact of a partnership. Here, we investigated the onset and molecular evolution of an obligate symbiosis between Cassidinae leaf beetles and Candidatus Stammera capleta, a γ-proteobacterium. Residing extracellularly within foregut symbiotic organs, Stammera upgrades the digestive physiology of its host by supplementing plant cell wall-degrading enzymes. We observe that Stammera is a shared symbiont across tortoise and hispine beetles that collectively comprise the Cassidinae subfamily, despite differences in their folivorous habits. In contrast to its transcriptional profile during vertical transmission, Stammera elevates the expression of genes encoding digestive enzymes while in the foregut symbiotic organs, matching the nutritional requirements of its host. Despite the widespread distribution of Stammera across Cassidinae beetles, symbiont acquisition during the Paleocene (∼62 mya) did not coincide with the origin of the subfamily. Early diverging lineages lack the symbiont and the specialized organs that house it. Reconstructing the ancestral state of host-beneficial factors revealed that Stammera encoded three digestive enzymes at the onset of symbiosis, including polygalacturonase-a pectinase that is universally shared. Although non-symbiotic cassidines encode polygalacturonase endogenously, their repertoire of plant cell wall-degrading enzymes is more limited compared with symbiotic beetles supplemented with digestive enzymes from Stammera. Highlighting the potential impact of a symbiotic condition and an upgraded metabolic potential, Stammera-harboring beetles exploit a greater variety of plants and are more speciose compared with non-symbiotic members of the Cassidinae.


Subject(s)
Coleoptera , Symbiosis , Animals , Coleoptera/physiology , Coleoptera/microbiology , Coleoptera/genetics , Gammaproteobacteria/genetics , Gammaproteobacteria/physiology , Biological Evolution , Evolution, Molecular
3.
Curr Biol ; 32(19): 4114-4127.e6, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35987210

ABSTRACT

Many insects rely on microbial protection in the early stages of their development. However, in contrast to symbiont-mediated defense of eggs and young instars, the role of microbes in safeguarding pupae remains relatively unexplored, despite the susceptibility of the immobile stage to antagonistic challenges. Here, we outline the importance of symbiosis in ensuring pupal protection by describing a mutualistic partnership between the ascomycete Fusarium oxysporum and Chelymorpha alternans, a leaf beetle. The symbiont rapidly proliferates at the onset of pupation, extensively and conspicuously coating C. alternans during metamorphosis. The fungus confers defense against predation as symbiont elimination results in reduced pupal survivorship. In exchange, eclosing beetles vector F. oxysporum to their host plants, resulting in a systemic infection. By causing wilt disease, the fungus retained its phytopathogenic capacity in light of its symbiosis with C. alternans. Despite possessing a relatively reduced genome, F. oxysporum encodes metabolic pathways that reflect its dual lifestyle as a plant pathogen and a defensive insect symbiont. These include virulence factors underlying plant colonization, along with mycotoxins that may contribute to the defensive biochemistry of the insect host. Collectively, our findings shed light on a mutualism predicated on pupal protection of an herbivorous beetle in exchange for symbiont dissemination and propagation.


Subject(s)
Ascomycota , Coleoptera , Mycotoxins , Animals , Insecta , Plants , Pupa , Virulence Factors
4.
Proc Biol Sci ; 289(1973): 20220386, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35473381

ABSTRACT

Faithful transmission of beneficial symbionts is critical for the persistence of mutualisms. Many insect groups rely on extracellular routes that require microbial symbionts to survive outside the host during transfer. However, given a prolonged aposymbiotic phase in offspring, how do mothers mitigate the risk of symbiont loss due to unsuccessful transmission? Here, we investigated symbiont regulation and reacquisition during extracellular transfer in the tortoise beetle, Chelymorpha alternans (Coleoptera: Cassidinae). Like many cassidines, C. alternans relies on egg caplets to vertically propagate its obligate symbiont Candidatus Stammera capleta. On average, each caplet is supplied with 12 symbiont-bearing spheres where Stammera is embedded. We observe limited deviation (±2.3) in the number of spheres allocated to each caplet, indicating strict maternal control over symbiont supply. Larvae acquire Stammera 1 day prior to eclosion but are unable to do so after hatching, suggesting that a specific developmental window governs symbiont uptake. Experimentally manipulating the number of spheres available to each egg revealed that a single sphere is sufficient to ensure successful colonization by Stammera relative to the 12 typically packaged within a caplet. Collectively, our findings shed light on a tightly regulated symbiont transmission cycle optimized to ensure extracellular transfer.


Subject(s)
Coleoptera , Symbiosis , Animals , Enterobacteriaceae , Insecta , Larva , Symbiosis/physiology
5.
FEMS Microbiol Ecol ; 98(1)2022 02 21.
Article in English | MEDLINE | ID: mdl-35142841

ABSTRACT

Symbioses are significant drivers of insect evolutionary ecology. Despite recent findings that these associations can emerge from environmentally derived bacterial precursors, there is still little information on how these potential progenitors of insect symbionts circulate in trophic systems. Serratia symbiotica represents a valuable model for deciphering evolutionary scenarios of bacterial acquisition by insects, as its diversity includes gut-associated strains that retained the ability to live independently of their hosts, representing a potential reservoir for symbioses emergence. Here, we conducted a field study to examine the distribution and diversity of S. symbiotica found in aphid populations, and in different compartments of their surrounding environment. Twenty % of aphid colonies were infected with S. symbiotica, including a wide diversity of strains with varied tissue tropism corresponding to different lifestyle. We also showed that the prevalence of S. symbiotica is influenced by seasonal temperatures. We found that S. symbiotica was present in non-aphid species and in host plants, and that its prevalence in these samples was higher when associated aphid colonies were infected. Furthermore, phylogenetic analyses suggest the existence of horizontal transfers between the different trophic levels. These results provide a new picture of the pervasiveness of an insect symbiont in nature.


Subject(s)
Aphids , Animals , Aphids/microbiology , Phylogeny , Serratia/genetics , Symbiosis
6.
PLoS One ; 16(8): e0256019, 2021.
Article in English | MEDLINE | ID: mdl-34379678

ABSTRACT

Many insect species are associated with bacterial partners that can significantly influence their evolutionary ecology. Compared to other insect groups, aphids harbor a bacterial microbiota that has the reputation of being poorly diversified, generally limited to the presence of the obligate nutritional symbiont Buchnera aphidicola and some facultative symbionts. In this study, we analyzed the bacterial diversity associated with the dogwood-grass aphid Anoecia corni, an aphid species that spends much of its life cycle in a subterranean environment. Little is known about the bacterial diversity associated with aphids displaying such a lifestyle, and one hypothesis is that close contact with the vast microbial community of the rhizosphere could promote the acquisition of a richer bacterial diversity compared to other aphid species. Using 16S rRNA amplicon Illumina sequencing on specimens collected on wheat roots in Morocco, we identified 10 bacterial operational taxonomic units (OTUs) corresponding to five bacterial genera. In addition to the obligate symbiont Buchnera, we identified the facultative symbionts Serratia symbiotica and Wolbachia in certain aphid colonies. The detection of Wolbachia is unexpected as it is considered rare in aphids. Moreover, its biological significance remains unknown in these insects. Besides, we also detected Arsenophonus and Dactylopiibacterium carminicum. These results suggest that, despite its subterranean lifestyle, A. corni shelter a bacterial diversity mainly limited to bacterial endosymbionts.


Subject(s)
Aphids/microbiology , Bacteria/classification , Bacteria/isolation & purification , Biodiversity , Biological Evolution , Genetic Variation , Symbiosis , Animals , Bacteria/genetics , High-Throughput Nucleotide Sequencing , Microbiota , Morocco , Phylogeny , Sequence Analysis, DNA
7.
Curr Opin Insect Sci ; 35: 20-26, 2019 10.
Article in English | MEDLINE | ID: mdl-31302355

ABSTRACT

Climate change is altering the abundance and distribution of millions of insect species around the world and is a major contributor to the decline of numerous species. Many insect species may be indirectly affected through their nutritional dependence on mutualistic bacteria. Indeed, these bacterial partners generally have a highly reduced and static genome, resulting from millions of years of coevolution and isolation in insect cells, and have limited adaptive capacity. The dependence of insects on bacterial partners with narrow environmental tolerance also restricts their ability to adapt, potentially increasing the risk of their extinction, particularly in a world characterized by increasing and fluctuating temperatures. In this review, we examine how climate change can affect the evolutionary trajectories of bacterial mutualism in insects by considering the possible alternatives that may compensate for the dependence on bacterial partners that have become 'Achilles' heels'. We also discuss the beneficial and compensatory effects, as well as the antagonistic effects associated with so-called facultative symbionts in the context of an increased incidence of transient extreme temperatures.


Subject(s)
Bacterial Physiological Phenomena , Biological Evolution , Insecta/microbiology , Animals , Bacteria/genetics , Climate Change , Insecta/genetics , Insecta/physiology , Symbiosis , Temperature
8.
Front Microbiol ; 10: 764, 2019.
Article in English | MEDLINE | ID: mdl-31037067

ABSTRACT

Symbiosis is a common phenomenon in nature that substantially affects organismal ecology and evolution. Fundamental questions regarding how mutualistic associations arise and evolve in nature remain, however, poorly studied. The aphid-Serratia symbiotica bacterium interaction represents a valuable model to study mechanisms shaping these symbiotic interspecific interactions. S. symbiotica strains capable of living independently of aphid hosts have recently been isolated. These strains probably resulted from horizontal transfers and could be an evolutionary link to an intra-organismal symbiosis. In this context, we used the tripartite interaction between the aphid Aphis fabae, a cultivable S. symbiotica bacterium, and the host plant Vicia faba to evaluate the bacterium ability to circulate in this system, exploring its environmental acquisition by aphids and horizontal transmission between aphids via the host plant. Using molecular analyses and fluorescence techniques, we showed that the cultivable S. symbiotica can enter the plants and induce new bacterial infections in aphids feeding on these new infected plants. Remarkably, we also found that the bacterium can have positive effects on the host plant, mainly at the root level. Furthermore, our results demonstrated that cultivable S. symbiotica can be horizontally transferred from infected to uninfected aphids sharing the same plant, providing first direct evidence that plants can mediate horizontal transmission of certain strains of this symbiont species. These findings highlight the importance of considering symbiotic associations in complex systems where microorganisms can circulate between different compartments. Our study can thus have major implications for understanding the multifaceted interactions between microbes, insects and plants.

9.
Appl Environ Microbiol ; 85(10)2019 05 15.
Article in English | MEDLINE | ID: mdl-30850430

ABSTRACT

Symbiotic microorganisms are widespread in nature and can play a major role in the ecology and evolution of animals. The aphid-Serratia symbiotica bacterium interaction provides a valuable model to study the mechanisms behind these symbiotic associations. The recent discovery of cultivable S. symbiotica strains with a free-living lifestyle allowed us to simulate their environmental acquisition by aphids to examine the mechanisms involved in this infection pathway. Here, after oral ingestion, we analyzed the infection dynamics of cultivable S. symbiotica during the host's lifetime using quantitative PCR and fluorescence techniques and determined the immediate fitness consequences of these bacteria on their new host. We further examined the transmission behavior and phylogenetic position of cultivable strains. Our study revealed that cultivable S. symbiotica bacteria are predisposed to establish a symbiotic association with a new aphid host, settling in its gut. We show that cultivable S. symbiotica bacteria colonize the entire aphid digestive tract following infection, after which the bacteria multiply exponentially during aphid development. Our results further reveal that gut colonization by the bacteria induces a fitness cost to their hosts. Nevertheless, it appeared that the bacteria also offer an immediate protection against parasitoids. Interestingly, cultivable S. symbiotica strains seem to be extracellularly transmitted, possibly through the honeydew, while S. symbiotica is generally considered a maternally transmitted bacterium living within the aphid body cavity and bringing some benefits to its hosts, despite its costs. These findings provide new insights into the nature of symbiosis in aphids and the mechanisms underpinning these interactions.IMPORTANCES. symbiotica is one of the most common symbionts among aphid populations and includes a wide variety of strains whose degree of interdependence on the host may vary considerably. S. symbiotica strains with a free-living capacity have recently been isolated from aphids. By using these strains, we established artificial associations by simulating new bacterial acquisitions involved in aphid gut infections to decipher their infection processes and biological effects on their new hosts. Our results showed the early stages involved in this route of infection. So far, S. symbiotica has been considered a maternally transmitted aphid endosymbiont. Nevertheless, we show that our cultivable S. symbiotica strains occupy and replicate in the aphid gut and seem to be transmitted over generations through an environmental transmission mechanism. Moreover, cultivable S. symbiotica bacteria are both parasites and mutualists given the context, as are many aphid endosymbionts. Our findings give new perception of the associations involved in bacterial mutualism in aphids.


Subject(s)
Aphids/microbiology , Serratia/physiology , Symbiosis , Animals , Phylogeny , Serratia/genetics
10.
Microb Ecol ; 78(1): 159-169, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30276419

ABSTRACT

Many insects engage in symbiotic associations with diverse assemblages of bacterial symbionts that can deeply impact on their ecology and evolution. The intraspecific variation of symbionts remains poorly assessed while phenotypic effects and transmission behaviors, which are key processes for the persistence and evolution of symbioses, may differ widely depending on the symbiont strains. Serratia symbiotica is one of the most frequent symbiont species in aphids and a valuable model to assess this intraspecific variation since it includes both facultative and obligate symbiotic strains. Despite evidence that some facultative S. symbiotica strains exhibit a free-living capacity, the presence of these strains in wild aphid populations, as well as in insects with which they maintain regular contact, has never been demonstrated. Here, we examined the prevalence, diversity, and tissue tropism of S. symbiotica in wild aphids and associated ants. We found a high occurrence of S. symbiotica infection in ant populations, especially when having tended infected aphid colonies. We also found that the S. symbiotica diversity includes strains found located within the gut of aphids and ants. In the latter, this tissue tropism was found restricted to the proventriculus. Altogether, these findings highlight the extraordinary diversity and versatility of an insect symbiont and suggest the existence of novel routes for symbiont acquisition in insects.


Subject(s)
Ants/microbiology , Aphids/microbiology , Gastrointestinal Microbiome , Serratia/physiology , Symbiosis , Animals , Animals, Wild/microbiology , Animals, Wild/physiology , Ants/physiology , Aphids/classification , Aphids/genetics , Aphids/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Evolution , Intestines/microbiology , Intestines/physiology , Phylogeny , Serratia/genetics
11.
PLoS Pathog ; 12(3): e1005459, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26938743

ABSTRACT

Parasites and pollutants can both affect any living organism, and their interactions can be very important. To date, repeated studies have found that parasites and heavy metals or metalloids both have important negative effects on the health of animals, often in a synergistic manner. Here, we show for the first time that parasites can increase host resistance to metalloid arsenic, focusing on a clonal population of brine shrimp from the contaminated Odiel and Tinto estuary in SW Spain. We studied the effect of cestodes on the response of Artemia to arsenic (acute toxicity tests, 24h LC50) and found that infection consistently reduced mortality across a range of arsenic concentrations. An increase from 25°C to 29°C, simulating the change in mean temperature expected under climate change, increased arsenic toxicity, but the benefits of infection persisted. Infected individuals showed higher levels of catalase and glutathione reductase activity, antioxidant enzymes with a very important role in the protection against oxidative stress. Levels of TBARS were unaffected by parasites, suggesting that infection is not associated with oxidative damage. Moreover, infected Artemia had a higher number of carotenoid-rich lipid droplets which may also protect the host through the "survival of the fattest" principle and the antioxidant potential of carotenoids. This study illustrates the need to consider the multi-stress context (contaminants and temperature increase) in which host-parasite interactions occur.


Subject(s)
Arsenic/toxicity , Artemia/parasitology , Cestoda/physiology , Host-Parasite Interactions , Animals , Antioxidants/metabolism , Artemia/drug effects , Artemia/physiology , Climate Change , Lipid Metabolism , Oxidative Stress , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...