Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Res Ther ; 14(1): 179, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36451155

ABSTRACT

Synaptic degeneration is an early event closely associated with the course of Alzheimer's disease (AD). The identification of synaptic blood biomarkers is, therefore, of great interest and clinical relevance. The levels of most synaptic proteins are increased in the cerebrospinal fluid (CSF) of patients with AD, but their detection in blood is hitherto either unavailable or not very informative. This paradigm is related to their low concentration, their peripheral origin, or the presence of highly abundant blood proteins that hinder detection. In recent years, significant progress has been made in detecting the presynaptic protein ß-synuclein. This mini-review summarizes the results that highlight the role of ß-synuclein as a candidate blood marker for synaptic degeneration in AD.


Subject(s)
Alzheimer Disease , beta-Synuclein , Humans , Alzheimer Disease/diagnosis , Biomarkers
2.
J Anal At Spectrom ; 37(7): 1587-1588, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35876767

ABSTRACT

[This corrects the article DOI: 10.1039/C9JA00331B.].

3.
Front Aging Neurosci ; 14: 818606, 2022.
Article in English | MEDLINE | ID: mdl-35431896

ABSTRACT

Parkinson's disease is a complex neurodegenerative disorder resulting in a multifaceted clinical presentation which includes bradykinesia combined with either rest tremor, rigidity, or both, as well as many non-motor symptoms. The motor features of the disorder are associated with the pathological form of alpha synuclein aggregates and fibrils in Lewy bodies and loss of dopaminergic neurons in the substantia nigra. Parkinson's disease is increasingly considered as a group of underlying disorders with unique genetic, biological, and molecular abnormalities that are likely to respond differentially to a given therapeutic approach. For this reason, it is clinically challenging to treat and at present, no therapy can slow down or arrest the progression of Parkinson's disease. There is a clear unmet clinical need to develop reliable diagnostic and prognostic biomarkers. When disease-modifying treatments become available, prognostic biomarkers are required to support a definitive diagnosis and clinical intervention during the long prodromal period as no clinical implications or symptoms are observed. Robust diagnostic biomarkers would also be useful to monitor treatment response. Potential biomarkers for the sporadic form of Parkinson's disease have mostly included synuclein species (monomer, oligomer, phosphorylated, Lewy Body enriched fraction and isoforms). In this review, we consider the analysis of synuclein and its proteoforms in biological samples using proteomics techniques (immunoassay and mass spectrometry) applied to neurodegenerative disease research.

4.
Environ Pollut ; 279: 116897, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33774364

ABSTRACT

It has been proposed that non-protein thiols and organic acids play a major role in cadmium phytoavailability and distribution in plants. In the Cd-hyperaccumulator Solanum nigrum and non-accumulator Solanum melongena, the role of these organic ligands in the accumulation and detoxification mechanisms of Cd are debated. In this study, we used X-ray absorption spectroscopy to investigate Cd speciation in these plants (roots, stem, leaves) and in the soils used for their culture to unravel the plants responses to Cd exposure. The results show that Cd in the 100 mg kg-1 Cd-doped clayey loam soil is sorbed onto iron oxyhydroxides. In both S. nigrum and S. melongena, Cd in roots and fresh leaves is mainly bound to thiol ligands, with a small contribution of inorganic S ligands in S. nigrum leaves. We interpret the Cd binding to sulfur ligands as detoxification mechanisms, possibly involving the sequestration of Cd complexed with glutathione or phytochelatins in the plant vacuoles. In the stems, results show an increase binding of Cd to -O ligands (>50% for S. nigrum). We suggest that Cd is partly complexed by organic acids for transportation in the sap.


Subject(s)
Soil Pollutants , Solanum melongena , Solanum nigrum , Biodegradation, Environmental , Cadmium/analysis , Plant Roots/chemistry , Soil Pollutants/analysis , Sulfur , X-Ray Absorption Spectroscopy
5.
PLoS One ; 15(5): e0232379, 2020.
Article in English | MEDLINE | ID: mdl-32407324

ABSTRACT

Zinc (Zn) isotope ratios of dental enamel are a promising tracer for dietary reconstruction in archeology, but its use is still in its infancy. A recent study demonstrated a high risk of Zn contamination from nitrile, and latex gloves used during chemical sample preparation. Here we assess the potential impact of the use of such gloves during enamel sampling on the Zn isotope composition of teeth from a population of early Holocene hunter gatherers from Lapa do Santo, Lagoa Santa, Minas Gerais, Brazil. We first examined the amount of Zn and its isotopic composition released from the gloves used in this study by soaking them in weak nitric acid and water. We compared Zn isotope ratios obtained from teeth that were sampled wearing nitrile, latex or no gloves. Finally, we performed a linear mixed model (LMM) to investigate post hoc the relationship between the gloves used for sampling and the Zn isotope variability in dental enamel. We found that the gloves used in this study released a similar amount of Zn compared to previous work, but only in acidic solution. Zn isotope ratios of teeth and the LMM identified no sign of significant Zn coming from the gloves when teeth were handled for enamel sampling. We hypothesize that Zn in gloves is mostly released by contact with acids. We found that the main source of Zn isotope variability in the Lapa do Santo population was related to the developmental stage of the tooth tissues sampled. We report identical results for two individuals coming from a different archeological context. Tooth enamel formed in utero and/or during the two first years of life showed higher Zn isotope ratios than enamel formed after weaning. More work is required to systematically investigate if Zn isotopes can be used as a breastfeeding tracer.


Subject(s)
Archaeology , Diet , Tooth/chemistry , Zinc Isotopes/analysis , Artifacts , Brazil , Child , Humans , Infant , Weaning
6.
Metallomics ; 11(6): 1049-1059, 2019 06 19.
Article in English | MEDLINE | ID: mdl-30848262

ABSTRACT

Recent research performed on volunteers and patients suggested that diet, health, and basal metabolic rates (BMR) are factors controlling the bodily Zn isotope compositions (isotopic homeostasis). However, our poor understanding of the variability of Zn distribution among the different organs and fluids of the human body, and the ensuing isotope fractionation, limits the use of this isotopic system as a typical diagnostic tool for cancers and for past hominin diet reconstructions. Using box model calculations, we investigated the dynamics of Zn isotope variability in blood and other body tissues as well as the consistency of the hypothesis of heavy Zn isotope accumulation through time in the human body. We compare the results of the model with data obtained from control feeding experiments and from archeological samples. Model simulations indicate that the absence of an aging drift in non-circumpolar populations cannot be explained by their lower BMR. We argue that the drift observed in the blood of a circumpolar population results from a differential diet between young and older individuals in this population. When applied to the δ66Zn measured in blood, bones, or teeth, the present box model also offers insight into the isotope composition of the human diet, and therefore into its nature. Applying the model to isotopic observations on the remains of past hominins is a promising tool for diet reconstruction.


Subject(s)
Zinc Isotopes/metabolism , Aging , Basal Metabolism , Diet , Female , Homeostasis , Human Body , Humans , Male , Middle Aged , Models, Biological , Tissue Distribution , Zinc Isotopes/analysis , Zinc Isotopes/blood
7.
Sci Rep ; 8(1): 5077, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29568045

ABSTRACT

Here we report Sr and Zn isotope ratios of teeth of medieval to early modern Breton people a population whose diet is known from historical, archeological and collagen isotope data. Most of the population, buried in the Dominican convent of Rennes, France, consists of parliamentary nobles, wealthy commoners and ecclesiastics, who had a diet rich in animal products. Our aim is to assess how the Zn isotope ratios of their teeth compare to those of other French historical populations previously studied, which were characterized by cereal-based diets, and those of modern French individuals, who daily eat animal products. We describe a clear offset (∼0.35‰) between local and non-local human individuals in Zn isotope ratios. The δ66Zntooth values of local individuals overlap that of modern French people, and are lower than those of local carnivores. Non-local δ66Zn values are similar to those of historical individuals analyzed previously. We conclude the lower Zn isotope ratios of local humans relative to the associated fauna can be explained by the consumption of carnivorous fish and pork, in agreement with historical, zooarchaeological and collagen (C, N, S) isotope data. Zn isotopes could therefore be a tracer of fish and/or substantial meat consumption in ancient populations.


Subject(s)
Dental Enamel/chemistry , Diet/history , Fossils , Tooth/chemistry , Animals , Anthropology, Physical , Carbon Isotopes/chemistry , Female , Fishes , History, 21st Century , History, Medieval , Humans , Male , Meat/analysis , Nitrogen Isotopes/chemistry , Seafood/analysis , Strontium Isotopes/chemistry , Zinc/chemistry , Zinc Isotopes/chemistry
8.
Nat Commun ; 7: 13794, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27982033

ABSTRACT

Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes (δ66Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab-derived fluids. We show that the progressive decrease in δ66Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO42- complexes preferentially incorporate heavy δ66Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge.

9.
Proc Natl Acad Sci U S A ; 108(43): 17639-43, 2011 Oct 25.
Article in English | MEDLINE | ID: mdl-22006301

ABSTRACT

The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81-3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100-300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids.


Subject(s)
Soil/chemistry , Volcanic Eruptions/history , Amino Acids , Chemical Fractionation , Greenland , History, Ancient , Hydrogen-Ion Concentration , Iron Compounds/chemistry , Magnesium Silicates/chemistry , Microscopy, Electron , Zinc Isotopes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...