Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Future Oncol ; 20(6): 307-315, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38410920

ABSTRACT

Biliary tract cancer is a highly heterogeneous group of gastrointestinal cancers, and the only curative treatment is surgery, which is only applicable at early stages of the malignancy. ADJUBIL, a phase II trial (NCT05239169), aims to evaluate immunotherapy with durvalumab and tremelimumab with or without capecitabine in adjuvant situations for biliary tract cancers. A total of 40 prospective patients will be randomly assigned following surgery, consisting of a two-arm feasibility pilot part with a pick-the-winner design with durvalumab and tremelimumab in combination with or without capecitabine.


This article describes the design of a phase II clinical trial called ADJUBIL, which evaluates the use of immunotherapy (durvalumab and tremelimumab) with or without classic chemotherapy (capecitabine) in biliary tract cancer patients who have undergone curative surgery. This type of treatment is also called adjuvant therapy, meaning it is used after the primary treatment. Biliary tract cancer is a rare type of liver cancer, often diagnosed late. Following surgery, patients may experience an early return of the disease, called tumor relapse. To avoid or delay tumor relapse, patients need extra treatment. Pure chemotherapy (capecitabine) is the standard after curative surgery. For patients with no option for cure, chemotherapy together with new powerful immunotherapy has become standard. This study will recruit 40 adult patients with tumor removal, who will be randomly divided into two groups. Half of them will be treated with immunotherapy only (durvalumab and tremelimumab). The other half will be treated with capecitabine together with immunotherapy. This study will continue for 12 months, but the treatment can be stopped if, for example, the tumor reoccurs or any possible side effect of the therapy is detected. The most effective treatment type will be selected. This type of selection is called pick-the winner.


Subject(s)
Adjuvants, Immunologic , Biliary Tract Neoplasms , Humans , Adjuvants, Immunologic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biliary Tract Neoplasms/drug therapy , Biliary Tract Neoplasms/pathology , Capecitabine/therapeutic use , Clinical Trials, Phase II as Topic , Prospective Studies , Randomized Controlled Trials as Topic
2.
Methods Mol Biol ; 2589: 17-25, 2023.
Article in English | MEDLINE | ID: mdl-36255615

ABSTRACT

One of the main characteristics of cancer is the rapid proliferation of transformed cells. Cancer therapies aim to kill such cells. Cancer clones surviving therapy can be resistant to the treatment, but they can also lose the ability to proliferate. The ability of single cells to proliferate can be monitored in vitro and can provide insights into the sensitivity of tumor cells to chemotherapeutics. The following chapter describes how clonogenic hematopoietic cell growth can be determined with the colony formation assay.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Tumor Cells, Cultured , Clone Cells/pathology , Cell Proliferation , Colony-Forming Units Assay , Leukemia, Myeloid, Acute/pathology
3.
Methods Mol Biol ; 2589: 87-94, 2023.
Article in English | MEDLINE | ID: mdl-36255619

ABSTRACT

Experiments with cell cultures are an alternative to animal experiments. One problem, however, is the ethically questionable use of fetal calf serum (FCS, which some authors refer to as fetal bovine serum, FBS). Furthermore, FCS is an undefined variable mixture and a possible source of contaminations. We reported that lysine acetylation was very similar in cells in growth media containing FCS or human platelet lysate (hPL). Here, we explain in detail how to generate and use hPL as a cost-effective substitute for FCS in experiments with mammalian cell cultures. A large panel of cells and conditions can be cultured and tested in media with hPL.


Subject(s)
Lysine , Serum Albumin, Bovine , Animals , Humans , Cells, Cultured , Serum Albumin, Bovine/metabolism , Culture Media/metabolism , Acetylation , Lysine/metabolism , Blood Platelets/metabolism , Cell Proliferation , Cell Differentiation , Mammals/metabolism
4.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35197278

ABSTRACT

Evasion from drug-induced apoptosis is a crucial mechanism of cancer treatment resistance. The proapoptotic protein NOXA marks an aggressive pancreatic ductal adenocarcinoma (PDAC) subtype. To identify drugs that unleash the death-inducing potential of NOXA, we performed an unbiased drug screening experiment. In NOXA-deficient isogenic cellular models, we identified an inhibitor of the transcription factor heterodimer CBFß/RUNX1. By genetic gain and loss of function experiments, we validated that the mode of action depends on RUNX1 and NOXA. Of note is that RUNX1 expression is significantly higher in PDACs compared to normal pancreas. We show that pharmacological RUNX1 inhibition significantly blocks tumor growth in vivo and in primary patient-derived PDAC organoids. Through genome-wide analysis, we detected that RUNX1-loss reshapes the epigenetic landscape, which gains H3K27ac enrichment at the NOXA promoter. Our study demonstrates a previously unknown mechanism of NOXA-dependent cell death, which can be triggered pharmaceutically. Therefore, our data show a way to target a therapy-resistant PDAC, an unmet clinical need.


Subject(s)
Apoptosis/genetics , Carcinoma, Pancreatic Ductal/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Synthetic Lethal Mutations , Carcinoma, Pancreatic Ductal/pathology , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Humans , Pancreatic Neoplasms/pathology , Promoter Regions, Genetic , Up-Regulation
5.
Cancers (Basel) ; 13(14)2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34298678

ABSTRACT

The ribonucleotide reductase inhibitor hydroxyurea suppresses de novo dNTP synthesis and attenuates the hyperproliferation of leukemic blasts. Mechanisms that determine whether cells undergo apoptosis in response to hydroxyurea are ill-defined. We used unbiased proteomics to uncover which pathways control the transition of the hydroxyurea-induced replication stress into an apoptotic program in chronic and acute myeloid leukemia cells. We noted a decrease in the serine/threonine kinase RAF1/c-RAF in cells that undergo apoptosis in response to clinically relevant doses of hydroxyurea. Using the RAF inhibitor LY3009120, we show that RAF activity determines the sensitivity of leukemic cells toward hydroxyurea. We further disclose that pharmacological inhibition of the RAF downstream target BCL-XL with the drug navitoclax and RNAi combine favorably with hydroxyurea against leukemic cells. BCR-ABL1 and hyperactive FLT3 are tyrosine kinases that causally contribute to the development of leukemia and induce RAF1 and BCL-XL. Accordingly, the ABL inhibitor imatinib and the FLT3 inhibitor quizartinib sensitize leukemic cells to pro-apoptotic effects of hydroxyurea. Moreover, hydroxyurea and navitoclax kill leukemic cells with mutant FLT3 that are resistant to quizartinib. These data reveal cellular susceptibility factors toward hydroxyurea and how they can be exploited to eliminate difficult-to-treat leukemic cells with clinically relevant drug combinations.

6.
Biochim Biophys Acta Rev Cancer ; 1874(2): 188453, 2020 12.
Article in English | MEDLINE | ID: mdl-33068647

ABSTRACT

Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase. This enzyme is involved in a plethora of cellular processes, including apoptosis, autophagy, cell proliferation, and DNA repair. Remarkably, PP2A can act as a context-dependent tumor suppressor or promoter. Active PP2A complexes consist of structural (PP2A-A), regulatory (PP2A-B), and catalytic (PP2A-C) subunits. The regulatory subunits define the substrate specificity and the subcellular localization of the holoenzyme. Here we condense the increasing evidence that the PP2A B-type subunit PR130 is a critical regulator of cell identity and oncogenic transformation. We summarize knowledge on the biological functions of PR130 in normal and transformed cells, targets of the PP2A-PR130 complex, and how diverse extra- and intracellular stimuli control the expression and activity of PR130. We additionally review the impact of PP2A-PR130 on cardiac functions, neuronal processes, and anti-viral defense and how this might affect cancer development and therapy.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Animals , Apoptosis , Autophagy , Cell Proliferation , Cell Transformation, Neoplastic/genetics , DNA Repair , Heart Function Tests , Humans , Substrate Specificity
7.
Cancers (Basel) ; 11(10)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561534

ABSTRACT

Therapy of acute myeloid leukemia (AML) is unsatisfactory. Histone deacetylase inhibitors (HDACi) are active against leukemic cells in vitro and in vivo. Clinical data suggest further testing of such epigenetic drugs and to identify mechanisms and markers for their efficacy. Primary and permanent AML cells were screened for viability, replication stress/DNA damage, and regrowth capacities after single exposures to the clinically used pan-HDACi panobinostat (LBH589), the class I HDACi entinostat/romidepsin (MS-275/FK228), the HDAC3 inhibitor RGFP966, the HDAC6 inhibitor marbostat-100, the non-steroidal anti-inflammatory drug (NSAID) indomethacin, and the replication stress inducer hydroxyurea (HU). Immunoblotting was used to test if HDACi modulate the leukemia-associated transcription factors ß-catenin, Wilms tumor (WT1), and myelocytomatosis oncogene (MYC). RNAi was used to delineate how these factors interact. We show that LBH589, MS-275, FK228, RGFP966, and HU induce apoptosis, replication stress/DNA damage, and apoptotic fragmentation of ß-catenin. Indomethacin destabilizes ß-catenin and potentiates anti-proliferative effects of HDACi. HDACi attenuate WT1 and MYC caspase-dependently and -independently. Genetic experiments reveal a cross-regulation between MYC and WT1 and a regulation of ß-catenin by WT1. In conclusion, reduced levels of ß-catenin, MYC, and WT1 are molecular markers for the efficacy of HDACi. HDAC3 inhibition induces apoptosis and disrupts tumor-associated protein expression.

8.
ALTEX ; 36(2): 277-288, 2019.
Article in English | MEDLINE | ID: mdl-30570667

ABSTRACT

Experiments with cultured mammalian cells represent an in vitro alternative to animal experiments. Fetal calf serum (FCS) is the most commonly used media supplement worldwide. FCS contains a mixture of largely undefined growth factors and cytokines, which support cell proliferation. This undefined nature of FCS is a source of experimental variation, undesired immune responses, possible contaminations, and because of its way of production an ethical concern. Thus, alternative, defined, valid, and reliable media supplements should be characterized in a large number of experiments. Human platelet lysate (hPL) is increasingly appreciated as an alternative to FCS. Since it is unclear whether cells respond differentially to clinically relevant chemotherapeutics inducing replicative stress and DNA damage (Hydroxyurea, Irinotecan), induction of reactive oxygen species (ROS), the tyrosine kinase inhibitor (TKi) Imatinib, and novel epigenetic modifiers belonging to the group of histone deacetylase inhibitors (HDACi), we investigated these issues. Here we show that cancer cells derived from leukemia and colon cancer grow very similarly in culture media with FCS or outdated hPL. Notably, cells have practically identical proteomes under both culture conditions. Moreover, cells grown with FCS or hPL respond equally to all types of drugs and stress conditions that we have tested. In addition, the transfection of blood cells by electroporation can be achieved under both conditions. Furthermore, we reveal that class I HDACs, but not HDAC6, are required for the expression of the pan-leukemic marker WT1 under various culture conditions. Hence, hPL is a moderately priced substitute for FCS in various experimental settings.


Subject(s)
Antineoplastic Agents , Blood Platelets/metabolism , Cell Culture Techniques/methods , Culture Media/metabolism , Animals , Cells, Cultured , Humans , Serum
9.
Arch Toxicol ; 92(6): 2119-2135, 2018 06.
Article in English | MEDLINE | ID: mdl-29589053

ABSTRACT

A remaining expression of the transcription factor Wilms tumor 1 (WT1) after cytotoxic chemotherapy indicates remaining leukemic clones in patients. We determined the regulation and relevance of WT1 in leukemic cells exposed to replicative stress and DNA damage. To induce these conditions, we used the clinically relevant chemotherapeutics hydroxyurea and doxorubicin. We additionally treated cells with the pro-apoptotic kinase inhibitor staurosporine. Our data show that these agents promote apoptosis to a variable extent in a panel of 12 leukemic cell lines and that caspases cleave WT1 during apoptosis. A chemical inhibition of caspases as well as an overexpression of mitochondrial, anti-apoptotic BCL2 family proteins significantly reduces the processing of WT1 and cell death in hydroxyurea-sensitive acute promyelocytic leukemia cells. Although the reduction of WT1 correlates with the pharmacological efficiency of chemotherapeutics in various leukemic cells, the elimination of WT1 by different strategies of RNA interference (RNAi) does not lead to changes in the cell cycle of chronic myeloid leukemia K562 cells. RNAi against WT1 does also not increase the extent of apoptosis and the accumulation of γH2AX in K562 cells exposed to hydroxyurea. Likewise, a targeted genetic depletion of WT1 in primary oviduct cells does not increase the levels of γH2AX. Our findings position WT1 as a downstream target of the apoptotic process that occurs in response to cytotoxic forms of replicative stress and DNA damage.


Subject(s)
Apoptosis/drug effects , DNA Damage , Doxorubicin/pharmacology , Gene Expression Regulation, Leukemic/drug effects , Hydroxyurea/pharmacology , WT1 Proteins/metabolism , Animals , Apoptosis/genetics , Caspases/metabolism , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , DNA Replication/drug effects , Fallopian Tubes/drug effects , Female , Humans , K562 Cells , Mice, Knockout , Primary Cell Culture , WT1 Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...