Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(9)2020 May 09.
Article in English | MEDLINE | ID: mdl-32397464

ABSTRACT

Sprayed mortar or shotcrete is a construction technology that could enhance existing masonry buildings' resilience by reinforcing low-safety load-bearing walls. Many factors affect the resistance of shotcrete-reinforced structures. One of the most important is the bond strength at the interface between the shotcrete and the reinforced wall. According to previous technical literature, bond strength usually has two evaluation criteria: shear and tensile strength. The experimental campaign described in this article focused on the bond strength between sprayed mortar and three masonry materials without the influence of normal force or constraint, as well as the roughness of these materials. The analysis of these tests focused on determining the relation between bond strength, roughness, and material strength. The analyses revealed that material strength has a more significant effect on bond strength than roughness, and bond strength is related to shrinkage of the materials. On the basis of previous theories, these researchers found that when there is no obvious influence due to normal force and constraint, the shear strength and tensile strength are different, and the shear strength is likely to be the cohesion force of the two materials. Finally, this article concludes with a novel logarithmic relationship between these strengths.

2.
J Ind Ecol ; 23(4): 767-780, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31598060

ABSTRACT

Cities are rapidly growing and need to look for ways to optimize resource consumption. Metropolises are especially vulnerable in three main systems, often referred to as the FEW (i.e., food, energy, and water) nexus. In this context, urban rooftops are underutilized areas that might be used for the production of these resources. We developed the Roof Mosaic approach, which combines life cycle assessment with two rooftop guidelines, to analyze the technical feasibility and environmental implications of producing food and energy, and harvesting rainwater on rooftops through different combinations at different scales. To illustrate, we apply the Roof Mosaic approach to a densely populated neighborhood in a Mediterranean city. The building-scale results show that integrating rainwater harvesting and food production would avoid relatively insignificant emissions (13.9-18.6 kg CO2 eq/inhabitant/year) in the use stage, but their construction would have low environmental impacts. In contrast, the application of energy systems (photovoltaic or solar thermal systems) combined with rainwater harvesting could potentially avoid higher CO2 eq emissions (177-196 kg CO2 eq/inhabitant/year) but generate higher environmental burdens in the construction phase. When applied at the neighborhood scale, the approach can be optimized to meet between 7% and 50% of FEW demands and avoid up to 157 tons CO2 eq/year. This approach is a useful guide to optimize the FEW nexus providing a range of options for the exploitation of rooftops at the local scale, which can aid cities in becoming self-sufficient, optimizing resources, and reducing CO2 eq emissions.

3.
Sci Total Environ ; 626: 1319-1331, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29898539

ABSTRACT

Today, urban agriculture is one of the most widely used sustainability strategies to improve the metabolism of a city. Schools can play an important role in the implementation of sustainability master plans, due their socio-educational activities and their cohesive links with families; all key elements in the development of urban agriculture. Thus, the main objective of this research is to develop a procedure, in compact cities, to assess the potential installation of rooftop greenhouses (RTGs) in schools. The generation of a dynamic assessment tool capable of identifying and prioritizing schools with a high potential for RTGs and their eventual implementation would also represent a significant factor in the environmental, social, and nutritional education of younger generations. The methodology has four-stages (Pre-selection criteria; Selection of necessities; Sustainability analysis; and Sensitivity analysis and selection of the best alternative) in which economic, environmental, social and governance aspects all are considered. It makes use of Multi-Attribute Utility Theory and Multi-Criteria Decision Making, through the Integrated Value Model for Sustainability Assessments and the participation of two panels of multidisciplinary specialists, for the preparation of a unified sustainability index that guarantees the objectivity of the selection process. This methodology has been applied and validated in a case study of 11 schools in Barcelona (Spain). The social perspective of the proposed methodology favored the school in the case-study with the most staff and the largest parent-teacher association (social and governance indicators) that obtained the highest sustainability index (S11); at a considerable distance (45%) from the worst case (S3) with fewer school staff and parental support. Finally, objective decisions may be taken with the assistance of this appropriate, adaptable, and reliable Multi-Criteria Decision-Making tool on the vertical integration and implementation of urban agriculture in schools, in support of the goals of sustainable development and the circular economy.

SELECTION OF CITATIONS
SEARCH DETAIL
...