Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 60(4): 1179-90, 2009.
Article in English | MEDLINE | ID: mdl-19240103

ABSTRACT

The regulation of photosynthetic acclimation to canopy density was investigated in tobacco canopies and in tobacco and Arabidopsis plants with part of their foliage experimentally shaded. Both species acclimated to canopy light gradients and partial shading by allocating photosynthetic capacity to leaves in high light and adjusting chloroplast organization to the local light conditions. An investigation was carried out to determine whether signalling mediated by photoreceptors, sugars, cytokinin, and nitrate is involved in and necessary for proper photosynthetic acclimation. No evidence was found for a role for sugars, or for nitrate. The distribution of cytokinins in tobacco stands of contrasting density could be explained in part by irradiance-dependent delivery of cytokinins through the transpiration stream. Functional studies using a comprehensive selection of Arabidopsis mutants and transgenics showed that normal wild-type responses to partial shading were retained when signalling mediated by photoreceptors or cytokinins was disrupted. This indicates that these pathways probably operate in a redundant manner. However, the reduction of the chlorophyll a/b ratio in response to local shade was completely absent in the Arabidopsis Ws-2 accession mutated in PHYTOCHROME D and in the triple phyAphyCphyD mutant. Moreover, cytokinin receptor mutants also showed a reduced response, suggesting a previously unrecognized function of phyD and cytokinins.


Subject(s)
Acclimatization , Cytokinins/metabolism , Photoreceptors, Plant/metabolism , Photosynthesis , Plant Leaves/physiology , Arabidopsis/genetics , Chloroplasts/metabolism , Electron Transport , Mutation/genetics , Plant Transpiration , Plants, Genetically Modified , Nicotiana/physiology
2.
New Phytol ; 174(2): 367-380, 2007.
Article in English | MEDLINE | ID: mdl-17388899

ABSTRACT

Here, we investigated the impact of temperature on the carbon economy of two Plantago species from contrasting habitats. The lowland Plantago major and the alpine Plantago euryphylla were grown hydroponically at three constant temperatures: 13, 20 and 27 degrees C. Rates of photosynthetic CO(2) uptake (P) and respiratory CO(2) release (R) in shoots and R in roots were measured at the growth temperature using intact plants. At each growth temperature, air temperatures were changed to establish short-term temperature effects on the ratio of R to P (R/P). In both species, R/P was essentially constant in plants grown at 13 and 20 degrees C. However, R/P was substantially greater in 27 degrees C-grown plants, particularly in P. euryphylla. The increase in R/P at 27 degrees C would have been even greater had biomass allocation to roots not decreased with increasing growth temperature. Short-term increases in air temperature increased R/P in both species, with the effects of air temperature being most pronounced in 13 degrees C-grown plants. We conclude that temperature-mediated changes in biomass allocation play an important role in determining whole-plant R/P values, and, while homeostasis of R/P is achieved across moderate growth temperatures, homeostasis is not maintained when plants are exposed to growth temperatures higher than usually experienced in the natural habitat.


Subject(s)
Carbon/metabolism , Cell Respiration/physiology , Photosynthesis/physiology , Plantago/metabolism , Temperature , Acclimatization/physiology , Biomass , Carbon Dioxide/metabolism , Homeostasis/physiology , Plant Roots/metabolism , Plant Shoots/metabolism , Plantago/growth & development , Time Factors
3.
J Exp Bot ; 57(2): 267-81, 2006.
Article in English | MEDLINE | ID: mdl-16371402

ABSTRACT

The subject of this review is the impact of long-term changes in temperature on plant growth and its underlying components. The discussion highlights the extent to which thermal acclimation of metabolism is intrinsically linked to the plasticity of a range of biochemical and morphological traits. The fact that there is often a trade-off between temperature-mediated changes in net assimilation rates (NAR) and biomass allocation [in particular the specific leaf area (SLA)] when plants are grown at different temperatures is also highlighted. Also discussed is the role of temperature-mediated changes in photosynthesis and respiration in determining NAR values. It is shown that in comparisons that do not take phylogeny into account, fast-growing species exhibit greater temperature-dependent changes in RGR, SLA, and NAR than slow-growing plants. For RGR and NAR, such trends are maintained within phylogenetically independent contrasts (i.e. species adapted to more-favourable habitats consistently exhibit greater temperature-mediated changes than their congeneric counterparts adapted to less-favourable habitats). By contrast, SLA was not consistently more thermally plastic in species from favourable habitats. Interestingly, biomass allocation between leaves and roots was consistently more plastic in slow-growing species within individual phylogenetically independent contrasts, when plants were grown under contrasting temperatures. Finally, how interspecific variations in NAR account for an increasing proportion of variability in RGR as growth temperatures decrease is highlighted. Conversely, SLA played a more dominant role in determining interspecific variability in RGR at higher growth temperatures; thus, the importance of SLA in determining interspecific variation in RGR could potentially increase if annual mean temperatures increase in the future.


Subject(s)
Acclimatization , Plant Development , Temperature , Arabidopsis/anatomy & histology , Arabidopsis/growth & development , Arabidopsis/physiology , Biomass , Genetic Variation , Phenotype , Photosynthesis/physiology , Plant Physiological Phenomena , Respiration , Species Specificity
4.
New Phytol ; 166(3): 827-43, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15869645

ABSTRACT

Here we present a functional-structural plant model that integrates the growth of metamers into a growing, three-dimensional tree structure, and study the effects of different constraints and strategies on tree performance in different canopies. The tree is a three-dimensional system of connected metamers, and growth is defined by the flush probability of metamers. Tree growth was simulated for different canopy light environments. The result suggest that: the constraints result in an exponential, logistic and decay phase; a mono-layered-leaf crown results from self-shading in a closed canopy; a strong apical control results in slender trees like tall stature species; the interaction between weak apical control and light response results in a crown architecture and performance known from short stature species in closed forest; correlated leaf traits explain interspecific differences in growth, survival and adult stature. The model successfully unravels the interaction effects of different constraints and strategies on tree growth in different canopy light environments.


Subject(s)
Computer Simulation , Microclimate , Models, Biological , Models, Structural , Trees/physiology , Circadian Rhythm , Light , Trees/anatomy & histology
5.
J Exp Bot ; 52(360): 1563-74, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11457917

ABSTRACT

The mechanism of response of plants to vertical light intensity gradients in leaf canopies was investigated. Since shaded leaves transpire less than leaves in high light, it was hypothesized that cytokinins (CKs) carried by mass transport in the transpiration stream would be distributed over the leaf area of partially shaded plants parallel to the gradient in light intensity. It was also hypothesized that this causes the distribution of leaf growth, leaf N and photosynthetic capacity, and possibly chloroplast acclimation as observed in plants growing in leaf canopies. In a field experiment, the distribution of Ca, N and CKs in a bean leaf canopy of a dense and an open stand supported the concept of a role for CKs in the response of N allocation to the light gradient when a decreasing sensitivity for CKs with increasing leaf age is assumed. Both shading of one leaf of the pair of primary bean leaves and independent reduction of its transpiration rate in a growth cabinet experiment caused lower dry mass, N and Ca per unit leaf area in comparison to the opposite not treated leaf. Shading caused a parallel reduction in CK concentration, which supports the hypothesis, but independent reduction of transpiration rate failed to do the same. Application of benzylaminopurine (BA) counteracted the reduction caused by shade of leaf N, photosynthetic capacity and leaf area growth. The experiments show an important role for the transpiration stream in the response of plants to light gradients. Evidence is presented here that CKs carried in the transpiration stream may be important mediators for the acclimation of plants to leaf canopy density.


Subject(s)
Adaptation, Physiological , Adenine/analogs & derivatives , Cytokinins/metabolism , Fabaceae/physiology , Light , Plant Leaves/physiology , Plant Transpiration , Plants, Medicinal , Adenine/pharmacology , Benzyl Compounds , Biological Transport/physiology , Calcium/metabolism , Cell Division , Chloroplasts , Kinetin , Nitrogen/metabolism , Photosynthesis/drug effects , Photosynthesis/radiation effects , Photosynthetic Reaction Center Complex Proteins , Purines , Signal Transduction
6.
Plant Physiol ; 122(3): 915-23, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10712556

ABSTRACT

We investigated the effect of temperature and irradiance on leaf respiration (R, non-photorespiratory mitochondrial CO(2) release) of snow gum (Eucalyptus pauciflora Sieb. ex Spreng). Seedlings were hydroponically grown under constant 20 degrees C, controlled-environment conditions. Measurements of R (using the Laisk method) and photosynthesis (at 37 Pa CO(2)) were made at several irradiances (0-2,000 micromol photons m(-2) s(-1)) and temperatures (6 degrees C-30 degrees C). At 15 degrees C to 30 degrees C, substantial inhibition of R occurred at 12 micromol photons m(-2) s(-1), with maximum inhibition occurring at 100 to 200 micromol photons m(-2) s(-1). Higher irradiance had little additional effect on R at these moderate temperatures. The irradiance necessary to maximally inhibit R at 6 degrees C to 10 degrees C was lower than that at 15 degrees C to 30 degrees C. Moreover, although R was inhibited by low irradiance at 6 degrees C to 10 degrees C, it recovered with progressive increases in irradiance. The temperature sensitivity of R was greater in darkness than under bright light. At 30 degrees C and high irradiance, light-inhibited rates of R represented 2% of gross CO(2) uptake (v(c)), whereas photorespiratory CO(2) release was approximately 20% of v(c). If light had not inhibited leaf respiration at 30 degrees C and high irradiance, R would have represented 11% of v(c). Variations in light inhibition of R can therefore have a substantial impact on the proportion of photosynthesis that is respired. We conclude that the rate of R in the light is highly variable, being dependent on irradiance and temperature.


Subject(s)
Eucalyptus/metabolism , Plants, Medicinal , Carbon Dioxide/metabolism , Darkness , Eucalyptus/radiation effects , Kinetics , Light , Plant Leaves/metabolism , Plant Leaves/radiation effects , Temperature
7.
Plant Physiol ; 113(3): 961-965, 1997 Mar.
Article in English | MEDLINE | ID: mdl-12223656

ABSTRACT

We investigated whether leaf dark respiration (nonphotorespiratory mitochondrial CO2 release) is inhibited by light in several Poa species, and whether differences in light inhibition between the species are related to differences in the rate of leaf net photosynthesis. Four lowland (Poa annua L., Poa compressa L., Poa pratensis L., and Poa trivialis L.), one subalpine (Poa alpina L.), and two alpine (Poa costiniana Vick. and Poa fawcettiae Vick.) Poa species differing in whole plant relative growth rates were grown under identical controlled conditions. Nonphotorespiratory mitochondrial CO2 release in the light (Rd) was estimated according to the Laisk method. Photosynthesis was measured at ambient CO2 partial pressure (35 Pa) and 500 [mu]mol photons m-2 s-1. The rate of photosynthesis per unit leaf mass was positively correlated with the relative growth rate, with the slow-growing alpine Poa species exhibiting the lowest photosynthetic rates. Rates of both Rd and respiration in darkness were also substantially lower in the alpine species. Nonphotorespiratory CO2 release in darkness was higher than Rd in all species. However, despite some variation between the species in the level of light inhibition of respiration, no relationship was observed between the level of inhibition and the rate of photosynthesis. Similarly, the level of inhibition was not correlated with the relative growth rate. Our results support the suggestion that rates of leaf respiration in the light are closely associated with rates in darkness.

8.
Oecologia ; 77(2): 145-150, 1988 Nov.
Article in English | MEDLINE | ID: mdl-28310366

ABSTRACT

A hypothesis that a dense stand should develop a less uniform distribution of leaf nitrogen through the canopy than an open stand to increase total canopy photosynthesis was tested with experimentally established stands of Lysimachia vulgaris L. The effect of stand density on spatial variation of photon flux density, leaf nitrogen and specific leaf weight within the canopy was examined. Stand density had little effect on the value of the light extinction coefficient, but strongly affected the distribution of leaf nitrogen per unit area within a canopy. The open stand had more uniform distribution of leaf nitrogen than the dense stand. However, different light climates between stands explained only part of the variation of leaf nitrogen in the canopy. The specific leaf weight in the canopy increased with increasing relative photon flux density and with decreasing nitrogen concentration.

9.
Oecologia ; 68(2): 315-319, 1986 Jan.
Article in English | MEDLINE | ID: mdl-28310146

ABSTRACT

A diurnally fluctuating temperature was found to be almost an absolute requirement for the germination of Fimbristylis littoralis and Scirpus juncoides. It is demonstrated that in f. littoralis sensitivity to the amplitude of temperature fluctuation can functuation as a depth sensing mechanism under water. This species did not germinate at all in the absence of oxygen. S. juncoides germinated best in anaerobic conditions and at low oxygen concentrations, but normal atmospheric concentrations inhibited germination. It is shown that this requirement for little or no oxygen together with the requirement for a fluctuating temperature cause the germination of S. juncoides to be restricted to the upper layers of waterlogged soil.

SELECTION OF CITATIONS
SEARCH DETAIL
...