Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 14(17): 3059-3076, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37566734

ABSTRACT

Subunit-selective inhibition of N-methyl-d-aspartate receptors (NMDARs) is a promising therapeutic strategy for several neurological disorders, including epilepsy, Alzheimer's and Parkinson's disease, depression, and acute brain injury. We previously described the dihydroquinoline-pyrazoline (DQP) analogue 2a (DQP-26) as a potent NMDAR negative allosteric modulator with selectivity for GluN2C/D over GluN2A/B. However, moderate (<100-fold) subunit selectivity, inadequate cell-membrane permeability, and poor brain penetration complicated the use of 2a as an in vivo probe. In an effort to improve selectivity and the pharmacokinetic profile of the series, we performed additional structure-activity relationship studies of the succinate side chain and investigated the use of prodrugs to mask the pendant carboxylic acid. These efforts led to discovery of the analogue (S)-(-)-2i, also referred to as (S)-(-)-DQP-997-74, which exhibits >100- and >300-fold selectivity for GluN2C- and GluN2D-containing NMDARs (IC50 0.069 and 0.035 µM, respectively) compared to GluN2A- and GluN2B-containing receptors (IC50 5.2 and 16 µM, respectively) and has no effects on AMPA, kainate, or GluN1/GluN3 receptors. Compound (S)-(-)-2i is 5-fold more potent than (S)-2a. In addition, compound 2i shows a time-dependent enhancement of inhibitory actions at GluN2C- and GluN2D-containing NMDARs in the presence of the agonist glutamate, which could attenuate hypersynchronous activity driven by high-frequency excitatory synaptic transmission. Consistent with this finding, compound 2i significantly reduced the number of epileptic events in a murine model of tuberous sclerosis complex (TSC)-induced epilepsy that is associated with upregulation of the GluN2C subunit. Thus, 2i represents a robust tool for the GluN2C/D target validation. Esterification of the succinate carboxylate improved brain penetration, suggesting a strategy for therapeutic development of this series for NMDAR-associated neurological conditions.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Synaptic Transmission , Mice , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship , Synaptic Transmission/physiology , Glutamic Acid/pharmacology , Brain/metabolism
2.
Epilepsia ; 60(7): 1424-1437, 2019 07.
Article in English | MEDLINE | ID: mdl-31158310

ABSTRACT

OBJECTIVE: Glutamate-gated N-methyl-d-aspartate receptors (NMDARs) are instrumental to brain development and functioning. Defects in the GRIN2A gene, encoding the GluN2A subunit of NMDARs, cause slow-wave sleep (SWS)-related disorders of the epilepsy-aphasia spectrum (EAS). The as-yet poorly understood developmental sequence of early EAS-related phenotypes, and the role of GluN2A-containing NMDARs in the development of SWS and associated electroencephalographic (EEG) activity patterns, were investigated in Grin2a knockout (KO) mice. METHODS: Early social communication was investigated by ultrasonic vocalization (USV) recordings; the relationship of electrical activity of the cerebral cortex with SWS was studied using deep local field potential or chronic EEG recordings at various postnatal stages. RESULTS: Grin2a KO pups displayed altered USV and increased occurrence of high-voltage spindles. The pattern of slow-wave activity induced by low-dose isoflurane was altered in Grin2a KO mice in the 3rd postnatal week and at 1 month of age. These alterations included strong suppression of the delta oscillation power and an increase in the occurrence of the spike-wave bursts. The proportion of SWS and the sleep quality were transiently reduced in Grin2a KO mice aged 1 month but recovered by the age of 2 months. Grin2a KO mice also displayed spontaneous spike-wave discharges, which occurred nearly exclusively during SWS, at 1 and 2 months of age. SIGNIFICANCE: The impaired vocal communication, the spike-wave discharges occurring almost exclusively in SWS, and the age-dependent alteration of SWS that were all seen in Grin2a KO mice matched the sleep-related and age-dependent manifestations seen in children with EAS, hence validating the Grin2a KO as a reliable model of EAS disorders. Our data also show that GluN2A-containing NMDARs are involved in slow-wave activity, and that the period of postnatal brain development (postnatal day 30) when several anomalies peaked might be critical for GluN2A-dependent, sleep-related physiological and pathological processes.


Subject(s)
Receptors, N-Methyl-D-Aspartate/physiology , Sleep, Slow-Wave/physiology , Sleep/physiology , Vocalization, Animal , Animals , Animals, Newborn/physiology , Electroencephalography , Female , Male , Mice/growth & development , Mice, Inbred C57BL , Mice, Knockout , Receptors, N-Methyl-D-Aspartate/metabolism , Vocalization, Animal/physiology
3.
Cereb Cortex ; 29(6): 2424-2436, 2019 06 01.
Article in English | MEDLINE | ID: mdl-29771287

ABSTRACT

Epidemiological studies have provided contradictory data on the deleterious sequels of cesarean section (C-section) delivery and their links with developmental brain disorders such as Autism Spectrum Disorders. To gain better insight on these issues, we have now compared physiological, morphological, and behavioral parameters in vaginal, term, and preterm C-section delivered mice. We report that C-section delivery does not lead to long-term behavioral alterations though preterm C-section delivery modifies communicative behaviors in pups. Moreover, C-section delivery neither alters the gamma-aminobutyric acid (GABA) developmental excitatory to inhibitory shift nor the frequency or amplitude of glutamatergic and GABAergic postsynaptic currents in hippocampal pyramidal neurons. However, these neurons present an underdeveloped dendritic arbor at birth in pups born by C-section delivery, but this difference disappears 1 day later suggesting an accelerated growth after birth. Therefore, C-section delivery, with prematurity as an aggravating factor, induces transient developmental delays but neither impacts the GABA developmental sequence nor leads to long-term consequences in mice. The deleterious sequels of C-section delivery described in epidemiological studies might be due to a perinatal insult that could be aggravated by C-section delivery.


Subject(s)
Cesarean Section/adverse effects , Developmental Disabilities/epidemiology , Premature Birth , Animals , Behavior, Animal/physiology , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/pathology , CA3 Region, Hippocampal/physiopathology , Female , Male , Mice , Pregnancy , Pyramidal Cells/metabolism , Pyramidal Cells/pathology
4.
Cereb Cortex ; 29(9): 3778-3795, 2019 08 14.
Article in English | MEDLINE | ID: mdl-30295710

ABSTRACT

Epilepsy is a multifactorial disorder associated with neuronal hyperexcitability that affects more than 1% of the human population. It has long been known that adenosine can reduce seizure generation in animal models of epilepsies. However, in addition to various side effects, the instability of adenosine has precluded its use as an anticonvulsant treatment. Here we report that a stable analogue of diadenosine-tetraphosphate: AppCH2ppA effectively suppresses spontaneous epileptiform activity in vitro and in vivo in a Tuberous Sclerosis Complex (TSC) mouse model (Tsc1+/-), and in postsurgery cortical samples from TSC human patients. These effects are mediated by enhanced adenosine signaling in the cortex post local neuronal adenosine release. The released adenosine induces A1 receptor-dependent activation of potassium channels thereby reducing neuronal excitability, temporal summation, and hypersynchronicity. AppCH2ppA does not cause any disturbances of the main vital autonomous functions of Tsc1+/- mice in vivo. Therefore, we propose this compound to be a potent new candidate for adenosine-related treatment strategies to suppress intractable epilepsies.


Subject(s)
Adenosine/physiology , Anticonvulsants/administration & dosage , Dinucleoside Phosphates/administration & dosage , Neocortex/drug effects , Neurons/drug effects , Seizures/physiopathology , Animals , Female , Humans , Male , Membrane Potentials/drug effects , Mice , Mice, Transgenic , Neocortex/physiopathology , Neurons/physiology , Potassium Channels/physiology , Receptor, Adenosine A1/physiology , Seizures/prevention & control , Signal Transduction/drug effects , Tuberous Sclerosis Complex 1 Protein/genetics
5.
Methods Mol Biol ; 1677: 231-239, 2017.
Article in English | MEDLINE | ID: mdl-28986876

ABSTRACT

Analysis of electrophysiological properties of NMDARs and NMDAR-mediated synaptic transmission in identified neurons and synapses in brain slices is a major step in understanding their function in normal and pathological neuronal brain networks. In many central synapses excitatory postsynaptic currents (EPSCs) are mediated by excitatory neurotransmitter glutamate that activates colocalized AMPAR and NMDAR generating a complex EPSC. Here, we describe the methods commonly used in brain slices to study the electrophysiological properties of NMDAR-mediated component of spontaneous or evoked EPSCs by extracellular stimulation or by stimulating synaptically connected neurons. This approach is based on whole-cell patch-clamp recordings, pharmacological tools, and the analysis of the difference in temporal parameters between the AMPA and NMDA receptors. It allows pinpointing of the basic functional properties of NMDARs that are specific to identified brain regions, neurons, and synapses of wild-type or genetically manipulated mice.


Subject(s)
Brain/metabolism , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Excitatory Postsynaptic Potentials/physiology , Neurons/metabolism , Patch-Clamp Techniques , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...