Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 357: 124437, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925218

ABSTRACT

In densely populated urban areas, the pressure on water resources is considerable and will tend to intensify over the next decades. Preserving water resources therefore seems fundamental, but many questions remain as to the transfer of contaminants to subsurface waters in these largely sealed areas. Because of their toxicity and persistence in the environment, this work focused on the study of polycyclic aromatic hydrocarbons (PAHs), ubiquitous pollutants mainly produced by human activities. To better understand the main factors leading to the retention or transport of these pollutants in urban environments, vertical transects, from the surface to several meters down, were established on three study sites in or near Paris (France), selected according to an urbanization gradient. Soil samples collected at the surface and urban secondary carbonate deposits (USCD), similar to cave speleothems, sampled underground in quarries and aqueducts were analyzed. As the hydrophobic properties of PAHs favor their sorption onto organic matter, the latter was also studied using organic carbon analysis and UV fluorescence spectroscopy. The USCD located closest to the urbanized surface contained high concentrations of PAHs (76.8 ± 5.3 ng g-1), while the USCD located at greater depth with organic soil on the surface contained the lowest amount of PAHs (2.9 ± 0.4 ng g-1), and no PAHs with log KOC > 5. The results highlight the predominant role played by the presence of organic topsoil at the surface in retaining and storing large amounts of PAHs (1914-2595 ng. gsoil-1), particularly the most hydrophobic ones (i.e. 60% of the 15 PAHs are characterized by a Log KOC >5), which are also the most toxic. The lithology and thickness of the bedrock (between the surface and the USCD) also play an important role in the retention of PAHs, particularly those adsorbed on the particulate phase.

2.
Sci Total Environ ; 905: 167429, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37774882

ABSTRACT

Preserving water resources and limiting pollution are central environmental issues in the current context of intense anthropization. Among organic pollutants, polycyclic aromatic hydrocarbons (PAHs) are commonly analysed as part of water quality assessments. After being emitted into the atmosphere, these persistent organic pollutants are deposited on the continental surface, where they are transported to the aquatic environment by run-off and infiltration waters. Mainly due to anthropogenic emissions, PAHs can therefore be considered as a proxy for human activities. Urban secondary carbonate deposits (USCDs), similar to cave speleothems, have recently been studied for their potential as natural archives of water quality. However, USCDs have never been used to trace water organic pollution and only a few studies on PAHs in speleothems are available. This study focuses on a well-dated USCD covering the last 300 years from the Great Aqueduct of Belleville (north-east of Paris, France). The aim is to determine the nature and variation of trapped organic compounds over time and to discuss their origin, transport, and link with changes in soil occupation due to human activities. To do so, high-resolution solid-phase UV fluorescence imaging analyses were combined with chemical analyses of PAHs and organic carbon carried out on low-weight samples. The results show that PAHs have been present in urban surface water for 300 years. Over the last few decades, a 7-fold increase is observed, accompanied by a change in the pollution source, enriched in high-molecular-weight PAHs, probably linked to urban dust. This study also reveals modes of transport directly influenced by changes in the soil occupation that are very different from those usually encountered in natural environments. This work thus paves the way for a better long-term understanding of the impact of human activity on the transfer of pollutants to sub-surface waters.

3.
Sci Rep ; 13(1): 5901, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37041224

ABSTRACT

Charcoal and micro-layers of soot trapped in speleothems from the inner galleries of Nerja Cave were analysed through an interdisciplinary study. The absolute dating of the prehistoric subterranean activity of the cave and the identification of different phases of visits to the deep parts are presented and discussed. The charcoal analysis includes anthracological analysis and SEM-EDX. The soot analysis includes optical microscopy, Raman spectroscopy and TEM-EDX, and the microcounting of soot microlayers. The 14C dating of 53 charcoals identified 12 phases of prehistoric visits to the cave between 41,218 and 3299 cal. BP, putting back the origin of human occupation of this emblematic cave by 10,000 years. The interdisciplinary analysis of the soot microlayers allowed us to perform a high-precision zoom on the last three visitation phases identified by Bayesian analysis (8003-2998 cal. BP.), demonstrating that these phases contain at least 64 distinct incursions, with an average of one visit every 35 years for the Neolithic period. Spatial analysis showed that not all areas of the cave were used in the same periods, highlighting the repetition of visits to certain specific sectors of the Lower Galleries of the cave. Lastly, the anthracological data indicate a cross-cultural and unique use of Pinus tp. sylvestris-nigra wood for lighting activities over an extended period between the Gravettian and Upper Magdalenian.

4.
Anal Chem ; 94(7): 3046-3055, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35061344

ABSTRACT

We present a new methodology for the U/Th dating of carbonate materials using femtosecond laser ablation single-collector inductively coupled plasma sector field mass spectrometry (fsLA single-collector ICP-SFMS), isotopic mappings, and image processing. This approach allows working on samples at very low U levels (ng·g-1). One of the major advantages of this imaging method is that it allows us to exploit deteriorated samples that could not be analyzed by conventional bulk U/Th dating methods, thanks to the identification of contaminated or leached areas at the scale of a few tens of microns and the subsequent correction for detrital 230Th incorporation. Only a few milligrams of material are required for measurement, which allows us to work on small samples such as shell fragments. The parameters of the fsLA single-collector ICP-SFMS coupling have been carefully optimized to ensure very high sensitivity detection and ultralow background while preserving good plasma robustness and a spatial resolution of 30 × 50 µm2. The accuracy was evaluated from low-level U speleothems previously dated by a conventional U/Th dating technique involving digestion, resin purification, double spike, and detection by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). U/Th ages of two archaeological samples with U at low ng·g-1 levels, a giant terrestrial snail shell and a burned ostrich eggshell, were determined. The measured U/Th ages are consistent with the expected ages determined by luminescence dating methods.


Subject(s)
Carbonates , Lasers , Carbonates/analysis , Diagnostic Imaging , Mass Spectrometry/methods , Spectrum Analysis
6.
Sci Rep ; 11(1): 8944, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33903666

ABSTRACT

The Chauvet cave (UNESCO World Heritage site, France) is located in the Ardèche Gorge, a unique physical and cultural landscape. Its setting within the gorge-overlooking a meander cutoff containing a natural arch called the Pont d'Arc-is also remarkable. Investigating possible associations between sites' physical and cultural settings, chronologies of human occupation, and access conditions has become a major theme in archeological research. The present study aims to reconstruct the landscape of the Pont d'Arc meander cutoff during the Upper Paleolithic, when humans were present in the Chauvet Cave. We used uranium-series and electron spin resonance analyses to date the formation of the Pont d'Arc natural arch in the Combe d'Arc meander cutoff, near the Chauvet Cave. Results show that the meander became totally cutoff between 108 and 138 ka (95%). Hence, the natural arch formed before the Upper Paleolithic and the first known human presence in the Chauvet Cave, dated to 37 ka cal BP. These results allowed us to reconstruct a key part of the landscape surrounding the Chauvet Cave when it was being used by Upper-Paleolithic societies.

7.
J Hum Evol ; 133: 133-145, 2019 08.
Article in English | MEDLINE | ID: mdl-31358177

ABSTRACT

Geißenklösterle Cave (Germany) is one of the most important Paleolithic sites in Europe, as it is characterized by human occupation during the Middle and early Upper Paleolithic. Aurignacian layers prior to 37-38 ka cal BP feature both musical and figurative art objects that are linked to the early arrival in Europe of Homo sapiens. Middle Paleolithic layers yielded lithic artifacts attributed to Homo neanderthalensis. Since human occupation at the site is attributed to both Neanderthals and modern humans, chronology is essential to clarify the issues of Neanderthal disappearance, modern human expansion in Europe, and the origin of the Aurignacian in Western Europe. Electron spin resonance (ESR) dating was performed on fossil tooth enamel collected from the Middle Paleolithic layers, which are beyond the radiocarbon dating range, and from the nearly sterile 'transitional' geological horizon (GH) 17 and the lower Aurignacian deposits, to cross-check ESR ages with previous radiocarbon, thermoluminescence and ESR age results. The Middle Paleolithic layers were dated between 94 ± 10 ka (GH 21) and 55 ± 6 ka (GH 18) by ESR on tooth enamel. Mean ages for GH 17, at 46 ± 3 ka, and for the lower Aurignacian layers, at 37 ± 3 ka, are in agreement with previous dating results, thus supporting the reliability of ESR chronology for the base of the sequence where dating comparisons are not possible. These results suggest that Neanderthals occupied the site from Marine Isotope Stage (MIS) 5 to the second half of MIS 3 and confirm the antiquity of early Aurignacian deposits. The presence of an almost sterile layer that separates Middle and Upper Paleolithic occupations could be related to the abandonment of the site by Neanderthals, possibly during Heinrich Stadial 5 (ca. 49-47 ka), thus before the arrival of H. sapiens in the area around 42 ka cal BP. These dates for the Middle Paleolithic of the Swabian Jura represent an important contribution to the prehistory of the region, where nearly all of the excavations were conducted decades ago and prior to the development of reliable radiometric dating beyond the range of radiocarbon.


Subject(s)
Caves , Dental Enamel/chemistry , Electron Spin Resonance Spectroscopy , Fossils , Neanderthals , Animals , Archaeology , Germany , Humans
8.
Nat Commun ; 9(1): 2543, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29959313

ABSTRACT

Increasing atmospheric CO2 from man-made climate change is reducing surface ocean pH. Due to limited instrumental measurements and historical pH records in the world's oceans, seawater pH variability at the decadal and centennial scale remains largely unknown and requires documentation. Here we present evidence of striking secular trends of decreasing pH since the late nineteenth century with pronounced interannual to decadal-interdecadal pH variability in the South Pacific Ocean from 1689 to 2011 CE. High-amplitude oceanic pH changes, likely related to atmospheric CO2 uptake and seawater dissolved inorganic carbon fluctuations, reveal a coupled relationship to sea surface temperature variations and highlight the marked influence of El Niño/Southern Oscillation and Interdecadal Pacific Oscillation. We suggest changing surface winds strength and zonal advection processes as the main drivers responsible for regional pH variability up to 1881 CE, followed by the prominent role of anthropogenic CO2 in accelerating the process of ocean acidification.

9.
Sci Total Environ ; 518-519: 86-96, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25747368

ABSTRACT

The first record of urban speleothems used to reconstruct the history of heavy metal pollution of shallow groundwaters is presented. Two speleothems grew during the last 300 years in an underground aqueduct in the north-eastern part of Paris. They display high Pb, Mn V, Cu, Cd and Al concentrations since 1900 due to the urbanization of the site which triggered anthropogenic contamination of the water feeding the speleothems. Surprisingly, these heavy metal concentrations are also high in the oldest part. This early pollution could come from the use of Parisian waste as fertilizers in the orchards and vineyards cultivated above the aqueduct before urbanization. Lead isotopes were measured in these carbonates as well as in lead artifacts from the 17th-18th centuries ((206)Pb/(207)Pb=1.180+/-0.003). The mean (206)Pb/(207)Pb ratio, for one of the speleothems is 1.181+/-0.003 unvarying with time. These lead signatures are close to those of coal and old lead from northern European mines, lower than the natural background signature. It confirms that the high metal concentrations found come from anthropogenic pollution. Conversely, the lead isotopic composition of the second speleothem presents two temporal trends: for the oldest levels, the mean value (1.183+/-0.003) is similar to the first speleothem. For the youngest part, a lower value (1.172+/-0.005) is recorded, evidencing the contribution of a new lead source at the beginning of the industrial revolution. Pb isotopes were also measured in recent samples from a nearby superficial site. The first sample is a recent (AD 1975+/-15 years) deposit ((206)Pb/(207)Pb=1.148+/-0.003), and the second, a thin subactual layer ((206)Pb/(207)Pb=1.181+/-0.002). These data are compatible with the adding of anthropogenic sources (leaded gasoline and industrial lead from Rio Tinto ore).


Subject(s)
Environmental Monitoring/methods , Environmental Pollution/statistics & numerical data , Metals, Heavy/analysis , Geologic Sediments/chemistry , Mining , Paris , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL
...