Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(4)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578985

ABSTRACT

This work aims at bridging experimental and numerical approaches to determine the optimal operating parameters for the fabrication of well-shaped polyvinylpyrrolidone (PVP) particles via electrohydrodynamic atomization. Particular emphasis is given to the role of the PVP solution viscosity. Solutions of PVP at various concentrations dissolved in Dimethylformamide (DMF) were prepared and analyzed. Numerical simulation using a coupled electro-CFD model was used to determine the ranges of experimental flow rate and the voltage, ensuring that well-shaped spherical particles are produced. It was deduced that the optimal combination of the parameters (flow rate, voltage, and polymer concentration) can be well approximated by a scaling law. The established relationship allowed determination of a stability island that guarantees that the given polymer solution will form spherical particles. Analyzing morphology and sizes of the particles manufactured in the optimal parameters range, we show, among others, that the size of the PVP particles can be predicted as a function of the flow rate by a power scaling relationship.

2.
Front Physiol ; 9: 498, 2018.
Article in English | MEDLINE | ID: mdl-29875673

ABSTRACT

Cochlear implantation (CI) is a complex surgical procedure that restores hearing in patients with severe deafness. The successful outcome of the implanted device relies on a group of factors, some of them unpredictable or difficult to control. Uncertainties on the electrode array position and the electrical properties of the bone make it difficult to accurately compute the current propagation delivered by the implant and the resulting neural activation. In this context, we use uncertainty quantification methods to explore how these uncertainties propagate through all the stages of CI computational simulations. To this end, we employ an automatic framework, encompassing from the finite element generation of CI models to the assessment of the neural response induced by the implant stimulation. To estimate the confidence intervals of the simulated neural response, we propose two approaches. First, we encode the variability of the cochlear morphology among the population through a statistical shape model. This allows us to generate a population of virtual patients using Monte Carlo sampling and to assign to each of them a set of parameter values according to a statistical distribution. The framework is implemented and parallelized in a High Throughput Computing environment that enables to maximize the available computing resources. Secondly, we perform a patient-specific study to evaluate the computed neural response to seek the optimal post-implantation stimulus levels. Considering a single cochlear morphology, the uncertainty in tissue electrical resistivity and surgical insertion parameters is propagated using the Probabilistic Collocation method, which reduces the number of samples to evaluate. Results show that bone resistivity has the highest influence on CI outcomes. In conjunction with the variability of the cochlear length, worst outcomes are obtained for small cochleae with high resistivity values. However, the effect of the surgical insertion length on the CI outcomes could not be clearly observed, since its impact may be concealed by the other considered parameters. Whereas the Monte Carlo approach implies a high computational cost, Probabilistic Collocation presents a suitable trade-off between precision and computational time. Results suggest that the proposed framework has a great potential to help in both surgical planning decisions and in the audiological setting process.

3.
Article in English | MEDLINE | ID: mdl-27872840

ABSTRACT

Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known, and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...