Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Curr Pharm Des ; 20(32): 5218-44, 2014.
Article in English | MEDLINE | ID: mdl-24606796

ABSTRACT

Many tumors express one or more proteins that are either absent or hardly present in normal tissues, and which can be targeted by radiopharmaceuticals for either visualization of tumor cells or for targeted therapy. Radiopharmaceuticals can consist of a radionuclide and a carrier molecule that interacts with the tumor target and as such guides the attached radionuclide to the right spot. Radiopharmaceuticals hold great promise for the future of oncology by providing early, precise diagnosis and better, personalized treatment. Most advanced developments with marketed products are based on whole antibodies or antibody fragments as carrier molecules. However, a substantial number of (pre)clinical studies indicate that radiopharmaceuticals based on other carrier molecules, such as peptides, nonimmunoglobulin scaffolds, or nucleic acids may be valuable alternatives. In this review, we discuss the biological molecules that can deliver radionuclide payloads to tumor cells in terms of their structure, the selection procedure, their (pre)clinical status, and advantages or obstacles to their use in a radiopharmaceutical design. We also consider the plethora of molecular targets existing on cancer cells that can be targeted by radiopharmaceuticals, as well as how to select a radionuclide for a given diagnostic or therapeutic product.


Subject(s)
Drug Design , Neoplasms/diagnostic imaging , Radiopharmaceuticals , Animals , Drug Delivery Systems , Humans , Molecular Targeted Therapy , Neoplasms/radiotherapy , Precision Medicine/methods , Radionuclide Imaging/methods , Radiopharmaceuticals/therapeutic use
3.
Appl Radiat Isot ; 67(7-8): 1158-61, 2009.
Article in English | MEDLINE | ID: mdl-19303313

ABSTRACT

The BR2 reactor is a 100MW(th) high-flux 'materials testing reactor', which produces a wide range of radioisotopes for various applications in nuclear medicine and industry. Tin-117m ((117m)Sn), a promising radionuclide for therapeutic applications, and its production have been validated in the BR2 reactor. In contrast to therapeutic beta emitters, (117m)Sn decays via isomeric transition with the emission of monoenergetic conversion electrons which are effective for metastatic bone pain palliation and radiosynovectomy with lesser damage to the bone marrow and the healthy tissues. Furthermore, the emitted gamma photons are ideal for imaging and dosimetry.


Subject(s)
Nuclear Medicine/instrumentation , Tin Radioisotopes/chemistry , Electrons , Gamma Rays , Nuclear Medicine/methods , Radionuclide Generators , Tin Radioisotopes/therapeutic use
4.
Free Radic Biol Med ; 29(9): 846-57, 2000 Nov 01.
Article in English | MEDLINE | ID: mdl-11063910

ABSTRACT

The contribution of lipid peroxidation to myocardial injury by free radicals (FR) is still unclear. Consequently, we examined the functional damages inflicted on cultured rat cardiomyocytes (CM) during FR stress provoked by the xanthine/xanthine oxidase system (X/XO) or by a hydroperoxidized fatty acid ((9 Z, 11 E, 13 (S), 15 Z)-13-hydroperoxyocta-decatrienoic acid; 13-HpOTrE), in order to simulate in vitro the initial phase and the propagation phase of the FR attack, respectively. Transmembrane potentials were recorded with glass microelectrodes and contractions were monitored photometrically. The EPR spectroscopy showed that X/XO produced superoxide and hydroxyl radicals during 10 min. The X/XO system altered sharply and irreversibly the spontaneous electrical and mechanical activities of the CM. However, the gas chromatographic analysis showed that these drastic functional damages were associated with comparatively moderate membrane PUFA degradation. Moreover, the EPR analysis did not reveal the production of lipid-derived FR. 13-HpOTrE induced a moderate and reversible decrease in electrical parameters, with no change in CM contractions. These results indicate that the functional consequences of FR attack are dependent on the radical species present and do not support the idea that the membrane lipid breakdown is a major factor of myocardial oxidant dysfunction.


Subject(s)
Myocardium/metabolism , Oxidative Stress , Action Potentials/drug effects , Animals , Cells, Cultured , Electron Spin Resonance Spectroscopy , Fatty Acids/chemistry , Fatty Acids/metabolism , Free Radicals/metabolism , Heart/drug effects , In Vitro Techniques , Lipid Peroxidation/drug effects , Myocardial Contraction/drug effects , Myocardial Reperfusion Injury/etiology , Myocardial Reperfusion Injury/metabolism , Myocardium/cytology , Rats , Xanthine/metabolism , Xanthine/pharmacology , Xanthine Oxidase/metabolism , Xanthine Oxidase/pharmacology
5.
Lipids ; 34(5): 457-66, 1999 May.
Article in English | MEDLINE | ID: mdl-10380117

ABSTRACT

The purpose of the present investigation was to determine whether the beneficial effects of polyunsaturated fatty acids (PUFA) may influence ischemia-reperfusion-induced alterations of myocardial alpha- and beta-adrenoceptor (alpha-AR, beta-AR) responsiveness. This study was carried out using monolayer cultures of neonatal rat ventricular myocytes in a substrate-free, hypoxia-reoxygenation model of ischemia. The cardiomyocytes (CM) were incubated during 4 days in media enriched either with n-6 PUFA (arachidonic acid, AA) or with n-3 PUFA (eicosapentaenoic acid, EPA, and docosahexaenoic acid, DHA). The n-6/n-3 ratio in n-3 CM was close to 1.2, compared to 20.1 in n-6 CM. The contractile parameters of n-6 CM and n-3 CM were similar in basal conditions as well as during hypoxia and reoxygenation. In basal conditions, the phospholipid (PL) enrichment with long chain n-3 PUFA resulted in an increased chronotropic response to isoproterenol (ISO) and to phenylephrine (PHE). After posthypoxic reoxygenation, the chronotropic response to beta-AR activation in n-6 CM was significantly enhanced as compared with the control response in normoxia. In opposition, the ISO-induced rise in frequency in n-3 CM in control normoxia and after reoxygenation was similar. In these n-3 CM, the changes in contractile parameters, which accompanied the chronotropic response, were also similar in reoxygenation and in normoxic periods, although the rise in shortening velocity was slightly increased after reoxygenation. In response to PHE addition, only the chronotropic effect of n-6 CM appeared significantly enhanced after hypoxic treatment. These results suggested that increasing n-3 PUFA in PL reduced the increase in alpha- and beta-AR functional responses observed after hypoxia-reoxygenation. This effect may partly account for the assumed cardiac protective effect of n-3 PUFA, through the attenuation of the functional response to catecholamines in the ischemic myocardium.


Subject(s)
Cell Hypoxia , Fatty Acids, Unsaturated/metabolism , Membrane Lipids/metabolism , Myocardium/metabolism , Receptors, Adrenergic, alpha/metabolism , Receptors, Adrenergic, beta/metabolism , Animals , Cells, Cultured , Myocardial Contraction , Myocardial Ischemia/metabolism , Myocardium/cytology , Oxygen/metabolism , Phospholipids/metabolism , Rats , Rats, Wistar
6.
J Mol Cell Cardiol ; 31(2): 377-86, 1999 Feb.
Article in English | MEDLINE | ID: mdl-10093050

ABSTRACT

The polyunsaturated fatty acids (PUFAs) of the omega 3 series are known to modulate adrenergic functions in ventricular myocytes. This study evaluated the influence of hypoxia duration and PUFA composition on the ability of cultured rat cardiomyocytes in producing alpha- and beta-adrenergic messengers (IPs and cAMP). After hypoxia (1.5, 2.5 or 3.5 h) followed by reoxygenation (1h). IP and cAMP production was induced by phenylephrine or isoproterenol stimulation, respectively. Hypoxia did not affect the basal level of messenger production in unstimulated cells, but decreased the cAMP production elicited by isoproterenol stimulation (up to 50%). The decrease in IP production after phenylephrine stimulation was observed only after long-term hypoxia duration close to irreversible cellular damages. The use of modified culture media supplemented with either arachidonic acid (AA) or docosahexaenoic acid (DHA) induced cardiomyocytes displaying either an arachidonic acid membrane profile (35% AA and 2% DHA in the phospholipids) or a docosahexaenoic acid membrane profile (15% AA and 20% DHA). These modifications did not alter the basal level of either messenger production in unstimulated cells nor the IP released after alpha-adrenergic stimulation. Conversely, the decrease in cAMP production was significantly more pronounced in docosahexaenoic acid-enriched cells than in arachidonic acid-enriched cells. This study suggests that hypoxia alters the beta-adrenergic messenger production, and that the alpha-system may balance the depression of the beta-system. The depression of the beta-adrenergic function induced by the incorporation of docosahexaenoic acid in membrane phospholipids may contribute to the beneficial effect of this fatty acid in the reperfused heart.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Myocardium/cytology , Oxygen , Receptors, Adrenergic, alpha/metabolism , Receptors, Adrenergic, beta/metabolism , Animals , Cell Hypoxia , Cells, Cultured , Intracellular Fluid/metabolism , Phospholipids/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...