Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(3): 112252, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36920903

ABSTRACT

Oncogene-induced senescence is a phenomenon in which aberrant oncogene expression causes non-transformed cells to enter a non-proliferative state. Cells undergoing oncogenic induction display phenotypic heterogeneity, with some cells senescing and others remaining proliferative. The causes of heterogeneity remain unclear. We studied the sources of heterogeneity in the responses of human epithelial cells to oncogenic BRAFV600E expression. We found that a narrow expression range of BRAFV600E generated a wide range of activities of its downstream effector ERK. In population-level and single-cell assays, ERK activity displayed a non-monotonic relationship to proliferation, with intermediate ERK activities leading to maximal proliferation. We profiled gene expression across a range of ERK activities over time and characterized four distinct ERK response classes, which we propose act in concert to generate the ERK-proliferation response. Altogether, our studies map the input-output relationships between ERK activity and proliferation, elucidating how heterogeneity can be generated during oncogene induction.


Subject(s)
Oncogenes , Proto-Oncogene Proteins B-raf , Humans , Cell Line, Tumor , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism
2.
Cell Rep ; 42(4): 112324, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37000626

ABSTRACT

Patient-derived organoids (PDOs) are widely heralded as a drug-screening platform to develop new anti-cancer therapies. Here, we use a drug-repurposing library to screen PDOs of colorectal cancer (CRC) to identify hidden vulnerabilities within therapy-induced phenotypes. Using a microscopy-based screen that accurately scores drug-induced cell killing, we have tested 414 putative anti-cancer drugs for their ability to switch the EGFRi/MEKi-induced cytostatic phenotype toward cytotoxicity. A majority of validated hits (9/37) are microtubule-targeting agents that are commonly used in clinical oncology, such as taxanes and vinca-alkaloids. One of these drugs, vinorelbine, is consistently effective across a panel of >25 different CRC PDOs, independent of RAS mutational status. Unlike vinorelbine alone, its combination with EGFR/MEK inhibition induces apoptosis at all stages of the cell cycle and shows tolerability and effective anti-tumor activity in vivo, setting the basis for a clinical trial to treat patients with metastatic RAS-mutant CRC.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Colorectal Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Vinorelbine/pharmacology , Vinorelbine/therapeutic use , Drug Repositioning , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Organoids/metabolism
3.
PLoS Biol ; 20(1): e3001527, 2022 01.
Article in English | MEDLINE | ID: mdl-35089911

ABSTRACT

CRISPR-associated nucleases are powerful tools for precise genome editing of model systems, including human organoids. Current methods describing fluorescent gene tagging in organoids rely on the generation of DNA double-strand breaks (DSBs) to stimulate homology-directed repair (HDR) or non-homologous end joining (NHEJ)-mediated integration of the desired knock-in. A major downside associated with DSB-mediated genome editing is the required clonal selection and expansion of candidate organoids to verify the genomic integrity of the targeted locus and to confirm the absence of off-target indels. By contrast, concurrent nicking of the genomic locus and targeting vector, known as in-trans paired nicking (ITPN), stimulates efficient HDR-mediated genome editing to generate large knock-ins without introducing DSBs. Here, we show that ITPN allows for fast, highly efficient, and indel-free fluorescent gene tagging in human normal and cancer organoids. Highlighting the ease and efficiency of ITPN, we generate triple fluorescent knock-in organoids where 3 genomic loci were simultaneously modified in a single round of targeting. In addition, we generated model systems with allele-specific readouts by differentially modifying maternal and paternal alleles in one step. ITPN using our palette of targeting vectors, publicly available from Addgene, is ideally suited for generating error-free heterozygous knock-ins in human organoids.


Subject(s)
DNA/genetics , Deoxyribonuclease I/metabolism , Genetic Loci , Organoids/metabolism , Recombinational DNA Repair , Staining and Labeling/methods , Alleles , Base Sequence , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Colon/cytology , Colon/metabolism , DNA/metabolism , DNA End-Joining Repair , Deoxyribonuclease I/genetics , Electroporation/methods , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Gene Knock-In Techniques , Genetic Vectors , Genome, Human , Heterozygote , Humans , Organoids/cytology
4.
Nat Commun ; 12(1): 7159, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34887382

ABSTRACT

The most successful genetically encoded calcium indicators (GECIs) employ an intensity or ratiometric readout. Despite a large calcium-dependent change in fluorescence intensity, the quantification of calcium concentrations with GECIs is problematic, which is further complicated by the sensitivity of all GECIs to changes in the pH in the biological range. Here, we report on a sensing strategy in which a conformational change directly modifies the fluorescence quantum yield and fluorescence lifetime of a circular permutated turquoise fluorescent protein. The fluorescence lifetime is an absolute parameter that enables straightforward quantification, eliminating intensity-related artifacts. An engineering strategy that optimizes lifetime contrast led to a biosensor that shows a 3-fold change in the calcium-dependent quantum yield and a fluorescence lifetime change of 1.3 ns. We dub the biosensor Turquoise Calcium Fluorescence LIfeTime Sensor (Tq-Ca-FLITS). The response of the calcium sensor is insensitive to pH between 6.2-9. As a result, Tq-Ca-FLITS enables robust measurements of intracellular calcium concentrations by fluorescence lifetime imaging. We demonstrate quantitative imaging of calcium concentrations with the turquoise GECI in single endothelial cells and human-derived organoids.


Subject(s)
Biosensing Techniques/methods , Calcium/analysis , Endothelial Cells/metabolism , Luminescent Proteins/chemistry , Biosensing Techniques/instrumentation , Calcium/metabolism , Endothelial Cells/chemistry , Fluorescence , HeLa Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Organoids/chemistry , Organoids/metabolism
5.
STAR Protoc ; 2(3): 100690, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34557696

ABSTRACT

We describe an optimized, cost-effective, reproducible, and robust protocol to study sprouting angiogenesis in glass-bottom 96-well plates by confocal microscopy, ideal for screening of drug or shRNA libraries. Effective and stable knockdown of gene expression in primary endothelial cells is achieved by lentiviral transduction. Dynamic behavior of individual cells and fluorescent proteins is analyzed by time-lapse imaging, while competitive advantages in tip cell formation are assessed using mixtures of differentially labeled cell populations. Finally, we present a macro for high-throughput analysis. For complete information on the use and execution of this protocol, please refer to van der Bijl et al. (2020) and Kempers et al. (2021).


Subject(s)
High-Throughput Screening Assays/methods , Microscopy, Confocal/methods , Neovascularization, Physiologic/physiology , Endothelial Cells/metabolism , Humans , Morphogenesis
6.
Nat Genet ; 53(8): 1187-1195, 2021 08.
Article in English | MEDLINE | ID: mdl-34211178

ABSTRACT

Central to tumor evolution is the generation of genetic diversity. However, the extent and patterns by which de novo karyotype alterations emerge and propagate within human tumors are not well understood, especially at single-cell resolution. Here, we present 3D Live-Seq-a protocol that integrates live-cell imaging of tumor organoid outgrowth and whole-genome sequencing of each imaged cell to reconstruct evolving tumor cell karyotypes across consecutive cell generations. Using patient-derived colorectal cancer organoids and fresh tumor biopsies, we demonstrate that karyotype alterations of varying complexity are prevalent and can arise within a few cell generations. Sub-chromosomal acentric fragments were prone to replication and collective missegregation across consecutive cell divisions. In contrast, gross genome-wide karyotype alterations were generated in a single erroneous cell division, providing support that aneuploid tumor genomes can evolve via punctuated evolution. Mapping the temporal dynamics and patterns of karyotype diversification in cancer enables reconstructions of evolutionary paths to malignant fitness.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Single-Cell Analysis/methods , Cell Proliferation/genetics , Chromatin/genetics , Chromosomes, Human , Gene Dosage , Humans , Karyotype , Karyotyping , Microscopy, Confocal , Mitosis , Organoids/growth & development , Organoids/pathology , Spindle Apparatus/genetics
7.
Nat Cell Biol ; 23(4): 377-390, 2021 04.
Article in English | MEDLINE | ID: mdl-33795873

ABSTRACT

Direct targeting of the downstream mitogen-activated protein kinase (MAPK) pathway to suppress extracellular-regulated kinase (ERK) activation in KRAS and BRAF mutant colorectal cancer (CRC) has proven clinically unsuccessful, but promising results have been obtained with combination therapies including epidermal growth factor receptor (EGFR) inhibition. To elucidate the interplay between EGF signalling and ERK activation in tumours, we used patient-derived organoids (PDOs) from KRAS and BRAF mutant CRCs. PDOs resemble in vivo tumours, model treatment response and are compatible with live-cell microscopy. We established real-time, quantitative drug response assessment in PDOs with single-cell resolution, using our improved fluorescence resonance energy transfer (FRET)-based ERK biosensor EKAREN5. We show that oncogene-driven signalling is strikingly limited without EGFR activity and insufficient to sustain full proliferative potential. In PDOs and in vivo, upstream EGFR activity rigorously amplifies signal transduction efficiency in KRAS or BRAF mutant MAPK pathways. Our data provide a mechanistic understanding of the effectivity of EGFR inhibitors within combination therapies against KRAS and BRAF mutant CRC.


Subject(s)
Colorectal Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase Kinases/genetics , Mutation , Organoids/metabolism , Organoids/pathology , Single-Cell Analysis
8.
Oncogene ; 40(15): 2741-2755, 2021 04.
Article in English | MEDLINE | ID: mdl-33714985

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) are multipotent cells giving rise to all blood lineages during life. HSPCs emerge from the ventral wall of the dorsal aorta (VDA) during a specific timespan in embryonic development through endothelial hematopoietic transition (EHT). We investigated the ontogeny of HSPCs in mutant zebrafish embryos lacking functional pten, an important tumor suppressor with a central role in cell signaling. Through in vivo live imaging, we discovered that in pten mutant embryos a proportion of the HSPCs died upon emergence from the VDA, an effect rescued by inhibition of phosphatidylinositol-3 kinase (PI3K). Surprisingly, inhibition of PI3K in wild-type embryos also induced HSPC death. Surviving HSPCs colonized the caudal hematopoietic tissue (CHT) normally and committed to all blood lineages. Single-cell RNA sequencing indicated that inhibition of PI3K enhanced survival of multipotent progenitors, whereas the number of HSPCs with more stem-like properties was reduced. At the end of the definitive wave, loss of Pten caused a shift to more restricted progenitors at the expense of HSPCs. We conclude that PI3K signaling tightly controls HSPCs survival and both up- and downregulation of PI3K signaling reduces stemness of HSPCs.


Subject(s)
Hematopoietic Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Stem Cells/metabolism , Animals , Female , Humans , Signal Transduction , Survival Analysis , Zebrafish
9.
Curr Biol ; 30(19): 3862-3870.e6, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32888483

ABSTRACT

Accurate chromosome segregation during cell division critically depends on error correction of chromosome-spindle interactions and the spindle assembly checkpoint (SAC) [1-3]. The kinase MPS1 is an essential regulator of both processes, ensuring full chromosome biorientation before anaphase onset [3, 4]. To understand when and where MPS1 activation occurs and how MPS1 signaling is modulated during mitosis, we developed MPS1sen, a sensitive and specific FRET-based biosensor for MPS1 activity. By placing MPS1sen at different subcellular locations, we show that MPS1 activity initiates in the nucleus ∼9-12 min prior to nuclear envelope breakdown (NEB) in a kinetochore-dependent manner and reaches the cytoplasm at the start of NEB. Soon after initiation, MPS1 activity increases with switch-like kinetics, peaking at completion of NEB. We further show that timing and extent of pre-NEB MPS1 activity is regulated by Aurora B and PP2A-B56. MPS1sen phosphorylation declines in prometaphase as a result of formation of kinetochore-microtubule attachments, reaching low but still detectable levels at metaphase. Finally, leveraging the sensitivity and dynamic range of MPS1sen, we show deregulated MPS1 signaling dynamics in colorectal cancer cell lines and tumor organoids with diverse genomic instability phenotypes.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosome Segregation/physiology , M Phase Cell Cycle Checkpoints/physiology , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Anaphase , Aurora Kinase B/metabolism , Cell Cycle/physiology , Cell Cycle Proteins/physiology , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Nucleus/physiology , Chromosome Segregation/genetics , Fluorescence Resonance Energy Transfer/methods , HeLa Cells , Humans , Kinetochores/metabolism , M Phase Cell Cycle Checkpoints/genetics , Metaphase , Microtubules/metabolism , Mitosis/genetics , Mitosis/physiology , Organoids/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/physiology , Protein-Tyrosine Kinases/physiology , Signal Transduction , Spatio-Temporal Analysis , Spindle Apparatus/genetics , Spindle Apparatus/metabolism
11.
Cell ; 181(6): 1291-1306.e19, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32407674

ABSTRACT

Enteroendocrine cells (EECs) sense intestinal content and release hormones to regulate gastrointestinal activity, systemic metabolism, and food intake. Little is known about the molecular make-up of human EEC subtypes and the regulated secretion of individual hormones. Here, we describe an organoid-based platform for functional studies of human EECs. EEC formation is induced in vitro by transient expression of NEUROG3. A set of gut organoids was engineered in which the major hormones are fluorescently tagged. A single-cell mRNA atlas was generated for the different EEC subtypes, and their secreted products were recorded by mass-spectrometry. We note key differences to murine EECs, including hormones, sensory receptors, and transcription factors. Notably, several hormone-like molecules were identified. Inter-EEC communication is exemplified by secretin-induced GLP-1 secretion. Indeed, individual EEC subtypes carry receptors for various EEC hormones. This study provides a rich resource to study human EEC development and function.


Subject(s)
Enteroendocrine Cells/metabolism , RNA, Messenger/genetics , Cells, Cultured , Gastrointestinal Hormones/genetics , Gastrointestinal Tract/metabolism , Glucagon-Like Peptide 1/genetics , Humans , Organoids/metabolism , Transcription Factors/genetics , Transcriptome/genetics
12.
Nat Genet ; 51(5): 824-834, 2019 05.
Article in English | MEDLINE | ID: mdl-31036964

ABSTRACT

Chromosome segregation errors cause aneuploidy and genomic heterogeneity, which are hallmarks of cancer in humans. A persistent high frequency of these errors (chromosomal instability (CIN)) is predicted to profoundly impact tumor evolution and therapy response. It is unknown, however, how prevalent CIN is in human tumors. Using three-dimensional live-cell imaging of patient-derived tumor organoids (tumor PDOs), we show that CIN is widespread in colorectal carcinomas regardless of background genetic alterations, including microsatellite instability. Cell-fate tracking showed that, although mitotic errors are frequently followed by cell death, some tumor PDOs are largely insensitive to mitotic errors. Single-cell karyotype sequencing confirmed heterogeneity of copy number alterations in tumor PDOs and showed that monoclonal lines evolved novel karyotypes over time in vitro. We conclude that ongoing CIN is common in colorectal cancer organoids, and propose that CIN levels and the tolerance for mitotic errors shape aneuploidy landscapes and karyotype heterogeneity.


Subject(s)
Chromosomal Instability , Colorectal Neoplasms/genetics , Aneuploidy , Cell Line, Tumor , Chromosome Segregation , Colorectal Neoplasms/pathology , DNA Copy Number Variations , Humans , Imaging, Three-Dimensional , Karyotype , Karyotyping , Microsatellite Instability , Mitosis/genetics , Mutation , Organoids/pathology , Single-Cell Analysis
13.
Nat Med ; 25(5): 838-849, 2019 05.
Article in English | MEDLINE | ID: mdl-31011202

ABSTRACT

Ovarian cancer (OC) is a heterogeneous disease usually diagnosed at a late stage. Experimental in vitro models that faithfully capture the hallmarks and tumor heterogeneity of OC are limited and hard to establish. We present a protocol that enables efficient derivation and long-term expansion of OC organoids. Utilizing this protocol, we have established 56 organoid lines from 32 patients, representing all main subtypes of OC. OC organoids recapitulate histological and genomic features of the pertinent lesion from which they were derived, illustrating intra- and interpatient heterogeneity, and can be genetically modified. We show that OC organoids can be used for drug-screening assays and capture different tumor subtype responses to the gold standard platinum-based chemotherapy, including acquisition of chemoresistance in recurrent disease. Finally, OC organoids can be xenografted, enabling in vivo drug-sensitivity assays. Taken together, this demonstrates their potential application for research and personalized medicine.


Subject(s)
Organoids/pathology , Ovarian Neoplasms/pathology , Adult , Aged , Animals , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Genomics , Heterografts , Humans , Mice, SCID , Middle Aged , Mutation , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Precision Medicine
14.
J Cell Biol ; 218(4): 1250-1264, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30728176

ABSTRACT

Cytokinesis begins upon anaphase onset. An early step involves local activation of the small GTPase RhoA, which triggers assembly of an actomyosin-based contractile ring at the equatorial cortex. Here, we delineated the contributions of PLK1 and Aurora B to RhoA activation and cytokinesis initiation in human cells. Knock-down of PRC1, which disrupts the spindle midzone, revealed the existence of two pathways that can initiate cleavage furrow ingression. One pathway depends on a well-organized spindle midzone and PLK1, while the other depends on Aurora B activity and centralspindlin at the equatorial cortex and can operate independently of PLK1. We further show that PLK1 inhibition sequesters centralspindlin onto the spindle midzone, making it unavailable for Aurora B at the equatorial cortex. We propose that PLK1 activity promotes the release of centralspindlin from the spindle midzone through inhibition of PRC1, allowing centralspindlin to function as a regulator of spindle midzone formation and as an activator of RhoA at the equatorial cortex.


Subject(s)
Cell Cycle Proteins/metabolism , Cytokinesis , Microtubule-Associated Proteins/metabolism , Microtubules/enzymology , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Spindle Apparatus/enzymology , Animals , Aurora Kinase B/genetics , Aurora Kinase B/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Cycle Proteins/genetics , Enzyme Activation , HeLa Cells , Humans , Microtubule-Associated Proteins/genetics , Microtubules/genetics , Phosphoproteins/genetics , Protein Serine-Threonine Kinases/genetics , Protein Transport , Proto-Oncogene Proteins/genetics , Signal Transduction , Spindle Apparatus/genetics , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Polo-Like Kinase 1
15.
Methods Cell Biol ; 145: 91-106, 2018.
Article in English | MEDLINE | ID: mdl-29957217

ABSTRACT

Examining cell behavior in its correct tissue context is a major challenge in cell biology. The recent development of mammalian stem cell-based organoid cultures offers exciting opportunities to visualize dynamic cellular events in a 3D tissue-like setting. We describe here an approach for live imaging of cell division processes in intestinal organoid cultures derived from human and mouse adult stem cells. These approaches can be extended to the analysis of cellular events in diseased tissue, such as patient-derived tumor organoids.


Subject(s)
Cell Division/physiology , Microscopy/methods , Organoids/physiology , Stem Cells/physiology , Animals , Cell Culture Techniques/methods , Humans
16.
Elife ; 52016 11 15.
Article in English | MEDLINE | ID: mdl-27845624

ABSTRACT

Colorectal cancer (CRC) organoids can be derived from almost all CRC patients and therefore capture the genetic diversity of this disease. We assembled a panel of CRC organoids carrying either wild-type or mutant RAS, as well as normal organoids and tumor organoids with a CRISPR-introduced oncogenic KRAS mutation. Using this panel, we evaluated RAS pathway inhibitors and drug combinations that are currently in clinical trial for RAS mutant cancers. Presence of mutant RAS correlated strongly with resistance to these targeted therapies. This was observed in tumorigenic as well as in normal organoids. Moreover, dual inhibition of the EGFR-MEK-ERK pathway in RAS mutant organoids induced a transient cell-cycle arrest rather than cell death. In vivo drug response of xenotransplanted RAS mutant organoids confirmed this growth arrest upon pan-HER/MEK combination therapy. Altogether, our studies demonstrate the potential of patient-derived CRC organoid libraries in evaluating inhibitors and drug combinations in a preclinical setting.


Subject(s)
Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Drug Evaluation, Preclinical/methods , Mutant Proteins/antagonists & inhibitors , Organoids/drug effects , ras Proteins/antagonists & inhibitors , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Recombination, Genetic
17.
Nature ; 521(7550): 43-7, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25924068

ABSTRACT

Crypt stem cells represent the cells of origin for intestinal neoplasia. Both mouse and human intestinal stem cells can be cultured in medium containing the stem-cell-niche factors WNT, R-spondin, epidermal growth factor (EGF) and noggin over long time periods as epithelial organoids that remain genetically and phenotypically stable. Here we utilize CRISPR/Cas9 technology for targeted gene modification of four of the most commonly mutated colorectal cancer genes (APC, P53 (also known as TP53), KRAS and SMAD4) in cultured human intestinal stem cells. Mutant organoids can be selected by removing individual growth factors from the culture medium. Quadruple mutants grow independently of all stem-cell-niche factors and tolerate the presence of the P53 stabilizer nutlin-3. Upon xenotransplantation into mice, quadruple mutants grow as tumours with features of invasive carcinoma. Finally, combined loss of APC and P53 is sufficient for the appearance of extensive aneuploidy, a hallmark of tumour progression.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Intestines/pathology , Mutation/genetics , Organoids/metabolism , Organoids/pathology , Stem Cells/pathology , Aneuploidy , Animals , CRISPR-Cas Systems , Child , Child, Preschool , Colorectal Neoplasms/metabolism , Female , Genes, APC , Genes, p53/genetics , Heterografts , Humans , Imidazoles , Intercellular Signaling Peptides and Proteins/metabolism , Intestinal Mucosa/metabolism , Mice , Middle Aged , Mutagenesis, Site-Directed , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Transplantation , Piperazines , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Smad4 Protein/deficiency , Stem Cell Niche/physiology , Stem Cells/metabolism
18.
Dis Model Mech ; 7(7): 811-22, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24906371

ABSTRACT

In recent years it has become clear that, mechanistically, biomineralization is a process that has to be actively inhibited as a default state. This inhibition must be released in a rigidly controlled manner in order for mineralization to occur in skeletal elements and teeth. A central aspect of this concept is the tightly controlled balance between phosphate, a constituent of the biomineral hydroxyapatite, and pyrophosphate, a physiochemical inhibitor of mineralization. Here, we provide a detailed analysis of a zebrafish mutant, dragonfish (dgf), which is mutant for ectonucleoside pyrophosphatase/phosphodiesterase 1 (Enpp1), a protein that is crucial for supplying extracellular pyrophosphate. Generalized arterial calcification of infancy (GACI) is a fatal human disease, and the majority of cases are thought to be caused by mutations in ENPP1. Furthermore, some cases of pseudoxanthoma elasticum (PXE) have recently been linked to ENPP1. Similar to humans, we show here that zebrafish enpp1 mutants can develop ectopic calcifications in a variety of soft tissues - most notably in the skin, cartilage elements, the heart, intracranial space and the notochord sheet. Using transgenic reporter lines, we demonstrate that ectopic mineralizations in these tissues occur independently of the expression of typical osteoblast or cartilage markers. Intriguingly, we detect cells expressing the osteoclast markers Trap and CathepsinK at sites of ectopic calcification at time points when osteoclasts are not yet present in wild-type siblings. Treatment with the bisphosphonate etidronate rescues aspects of the dgf phenotype, and we detected deregulated expression of genes that are involved in phosphate homeostasis and mineralization, such as fgf23, npt2a, entpd5 and spp1 (also known as osteopontin). Employing a UAS-GalFF approach, we show that forced expression of enpp1 in blood vessels or the floorplate of mutant embryos is sufficient to rescue the notochord mineralization phenotype. This indicates that enpp1 can exert its function in tissues that are remote from its site of expression.


Subject(s)
Calcinosis/complications , Mutation/genetics , Phosphoric Diester Hydrolases/genetics , Pseudoxanthoma Elasticum/complications , Pseudoxanthoma Elasticum/enzymology , Pyrophosphatases/genetics , Vascular Calcification/complications , Zebrafish/genetics , Animals , Biomarkers/metabolism , Calcinosis/drug therapy , Calcinosis/enzymology , Calcium/metabolism , Choristoma/enzymology , Choristoma/pathology , Etidronic Acid/pharmacology , Etidronic Acid/therapeutic use , Fibroblast Growth Factor-23 , Homeostasis/drug effects , Humans , Notochord/drug effects , Notochord/pathology , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/pathology , Phenotype , Phosphates/metabolism , Pseudoxanthoma Elasticum/drug therapy , Vascular Calcification/drug therapy , Vascular Calcification/enzymology
19.
Sci Signal ; 6(285): rs12, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23882122

ABSTRACT

Genetically encoded, ratiometric biosensors based on fluorescence resonance energy transfer (FRET) are powerful tools to study the spatiotemporal dynamics of cell signaling. However, many biosensors lack sensitivity. We present a biosensor library that contains circularly permutated mutants for both the donor and acceptor fluorophores, which alter the orientation of the dipoles and thus better accommodate structural constraints imposed by different signaling molecules while maintaining FRET efficiency. Our strategy improved the brightness and dynamic range of preexisting RhoA and extracellular signal-regulated protein kinase (ERK) biosensors. Using the improved RhoA biosensor, we found micrometer-sized zones of RhoA activity at the tip of F-actin bundles in growth cone filopodia during neurite extension, whereas RhoA was globally activated throughout collapsing growth cones. RhoA was also activated in filopodia and protruding membranes at the leading edge of motile fibroblasts. Using the improved ERK biosensor, we simultaneously measured ERK activation dynamics in multiple cells using low-magnification microscopy and performed in vivo FRET imaging in zebrafish. Thus, we provide a construction toolkit consisting of a vector set, which enables facile generation of sensitive biosensors.


Subject(s)
Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Signal Transduction , Animals , Cell Differentiation , Cell Movement , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblasts/cytology , Green Fluorescent Proteins/chemistry , HEK293 Cells , Humans , Mice , Zebrafish
20.
Mol Cell Biol ; 30(22): 5421-31, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20855527

ABSTRACT

Epac1 is a guanine nucleotide exchange factor for the small G protein Rap and is involved in membrane-localized processes such as integrin-mediated cell adhesion and cell-cell junction formation. Cyclic AMP (cAMP) directly activates Epac1 by release of autoinhibition and in addition induces its translocation to the plasma membrane. Here, we show an additional mechanism of Epac1 recruitment, mediated by activated ezrin-radixin-moesin (ERM) proteins. Epac1 directly binds with its N-terminal 49 amino acids to ERM proteins in their open conformation. Receptor-induced activation of ERM proteins results in increased binding of Epac1 and consequently the clustered localization of Epac1 at the plasma membrane. Deletion of the N terminus of Epac1, as well as disruption of the Epac1-ERM interaction by an interfering radixin mutant or small interfering RNA (siRNA)-mediated depletion of the ERM proteins, impairs Epac1-mediated cell adhesion. We conclude that ERM proteins are involved in the spatial regulation of Epac1 and cooperate with cAMP- and Rap-mediated signaling to regulate adhesion to the extracellular matrix.


Subject(s)
Cyclic AMP/metabolism , Cytoskeletal Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , Signal Transduction/physiology , Animals , Cell Adhesion/physiology , Cell Line , Cell Membrane/metabolism , Cytoskeletal Proteins/genetics , Extracellular Matrix/metabolism , Guanine Nucleotide Exchange Factors/genetics , Humans , Membrane Proteins/genetics , Microfilament Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Two-Hybrid System Techniques , rap1 GTP-Binding Proteins/genetics , rap1 GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...