Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0301504, 2024.
Article in English | MEDLINE | ID: mdl-38728303

ABSTRACT

In the present study, an enzymatically hydrolyzed porcine plasma (EHPP) was nutritionally and molecularly characterized. EHPP molecular characterization showed, in contrast to spray-dried plasma (SDP), many peptides with relative molecular masses (Mr) below 8,000, constituting 73% of the protein relative abundance. IIAPPER, a well-known bioactive peptide with anti-inflammatory and antioxidant properties, was identified. In vivo functionality of EHPP was tested in C. elegans and two different mouse models of intestinal inflammation. In C. elegans subjected to lipopolysaccharide exposure, EHPP displayed a substantial anti-inflammatory effect, enhancing survival and motility by 40% and 21.5%, respectively. Similarly, in mice challenged with Staphylococcus aureus enterotoxin B or Escherichia coli O42, EHPP and SDP supplementation (8%) increased body weight and average daily gain while reducing the percentage of regulatory Th lymphocytes. Furthermore, both products mitigated the increase of pro-inflammatory cytokines expression associated with these challenged mouse models. In contrast, some significant differences were observed in markers such as Il-6 and Tnf-α, suggesting that the products may present different action mechanisms. In conclusion, EHPP demonstrated similar beneficial health effects to SDP, potentially attributable to the immunomodulatory and antioxidant activity of its characteristic low Mr bioactive peptides.


Subject(s)
Caenorhabditis elegans , Animals , Mice , Swine , Caenorhabditis elegans/metabolism , Hydrolysis , Plasma/metabolism , Cytokines/metabolism , Antioxidants/metabolism , Lipopolysaccharides , Anti-Inflammatory Agents/pharmacology
2.
BMC Complement Med Ther ; 24(1): 164, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641582

ABSTRACT

BACKGROUND: Infections caused by Acinetobacter baumannii are becoming a rising public health problem due to its high degree of acquired and intrinsic resistance mechanisms. Bacterial lipases penetrate and damage host tissues, resulting in multiple infections. Because there are very few effective inhibitors of bacterial lipases, new alternatives for treating A. baumannii infections are urgently needed. In recent years, Brassica vegetables have received a lot of attention since their phytochemical compounds have been directly linked to diverse antimicrobial actions by inhibiting the growth of various Gram-positive and Gram-negative bacteria, yeast, and fungi. Despite their longstanding antibacterial history, there is currently a lack of scientific evidence to support their role in the management of infections caused by the nosocomial bacterium, A. baumannii. This study aimed to address this gap in knowledge by examining the antibacterial and lipase inhibitory effects of six commonly consumed Brassica greens, Chinese cabbage (CC), curly and Tuscan kale (CK and TK), red and green Pak choi (RP and GP), and Brussels sprouts (BR), against A. baumannii in relation to their chemical profiles. METHODS: The secondary metabolites of the six extracts were identified using LC-QTOF-MS/MS analysis, and they were subsequently correlated with the lipase inhibitory activity using multivariate data analysis and molecular docking. RESULTS: In total, 99 metabolites from various chemical classes were identified in the extracts. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) revealed the chemical similarities and variabilities among the specimens, with glucosinolates and phenolic compounds being the major metabolites. RP and GP showed the highest antibacterial activity against A. baumannii, followed by CK. Additionally, four species showed a significant effect on the bacterial growth curves and demonstrated relevant inhibition of A. baumannii lipolytic activity. CK showed the greatest inhibition (26%), followed by RP (21%), GP (21%), and TK (15%). Orthogonal partial least squares-discriminant analysis (OPLS-DA) pinpointed 9 metabolites positively correlated with the observed bioactivities. Further, the biomarkers displayed good binding affinities towards lipase active sites ranging from -70.61 to -30.91 kcal/mol, compared to orlistat. CONCLUSION: This study emphasizes the significance of Brassica vegetables as a novel natural source of potential inhibitors of lipase from A. baumannii.


Subject(s)
Acinetobacter baumannii , Brassica , Brassica/chemistry , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tandem Mass Spectrometry , Gram-Negative Bacteria , Gram-Positive Bacteria , Phytochemicals/pharmacology , Lipase
3.
Food Res Int ; 180: 114053, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395547

ABSTRACT

Turnip (Brassica rapa var rapa L.) leaves are a rich source of versatile bioactive phytochemicals with great potential in the food and herbal industries. However, the effect of drying on its constituents has never been studied before. Hereto, three drying techniques were compared, namely, lyophilization (LY), vacuum oven (VO), and shade drying (SD). Chemical profiling utilizing liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS) combined with chemometrics showed the different impacts of the drying methods on the phytochemical composition of the alcoholic leaf extracts. Unsupervised principal component analysis (PCA) and supervised partial least squares-discriminant analysis (PLS-DA) of the LC-QTOF-MS/MS data showed distinct distant clustering across the three drying techniques. Loading plots and VIP scores demonstrated that sinapic acid, isorhamnetin glycosides, and sinapoyl malate were key markers for LY samples. Meanwhile, oxygenated and polyunsaturated fatty acids were characteristic for SD samples and oxygenated polyunsaturated fatty acids and verbascoside were characteristic for VO samples. LY resulted in the highest total phenolics (TP) and total flavonoid (TF) contents followed by SD and VO. LY and SD samples had much higher antioxidant activity than VO measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC), and iron metal chelation assays. According to the anticancer activity, the drying methods were ranked in descending order as SD > LY â‰« VO when tested against colon, breast, liver, and lung cancer cell lines. Among the identified compounds, flavonoids and omega-3 fatty acids were key metabolites responsible for the anticancer activity as revealed by partial least squares (PLS) regression and correlation analyses. In conclusion, compared to LY, SD projected out as a cost-effective drying method without compromising the phytochemical and biological activities of Brassica greens. The current findings lay the foundation for further studies concerned with the valorization of Brassica greens.


Subject(s)
Antioxidants , Brassica , Antioxidants/analysis , Tandem Mass Spectrometry , Brassica/metabolism , Chemometrics , Chromatography, Liquid , Flavonoids/analysis , Phenols/analysis , Phytochemicals/pharmacology , Fatty Acids, Unsaturated
4.
Phytochem Anal ; 35(4): 690-707, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38212263

ABSTRACT

INTRODUCTION: This research explores sustainable applications for waste generated from fenugreek (Trigonella foenum-graecum), a plant with both nutritional and medicinal uses. The study specifically targets waste components as potential sources of nutrients and bioactive compounds. OBJECTIVES: The focus is to conduct detailed metabolic profiling of fenugreek waste, assess its anti-inflammatory properties by studying its cyclooxygenase (COX) inhibitory effect, and correlate this effect to the metabolite fingerprint. MATERIALS AND METHODS: Ethanolic extracts of fenugreek fruit pericarp and a combination of leaves and stems were subjected to untargeted metabolic profiling using liquid chromatography-mass spectrometry integrated with online database searches and molecular networking as an effective dereplication strategy. The study also scrutinized the COX inhibitory capabilities of these extracts and saponin-rich fractions prepared therefrom. Molecular docking was employed to investigate the specific interactions between the identified saponins and COX enzymes. RESULTS: The analysis led to the annotation of 81 metabolites, among which saponins were predominant. The saponin-rich fraction of the fruit pericarp extract displayed the strongest COX-II inhibitory activity in the in vitro inhibition assay (IC50 value of 81.64 ± 3.98 µg/mL). The molecular docking study supported the selectivity of the identified saponins towards COX-II. The two major identified saponins, namely, proto-yamogenin 3-O-[deoxyhexosyl (1 → 2)] [hexosyl (1 → 4)] hexoside 26-O-hexoside and trigofenoside A, were predicted to have the highest affinity to the COX-II receptor site. CONCLUSION: In the present study, we focused on the identification of COX-II inhibitory saponins in fenugreek waste through an integrated approach. The findings offer valuable insights into potential anti-inflammatory and cancer chemoprotective applications of fenugreek waste.


Subject(s)
Cyclooxygenase 2 Inhibitors , Metabolomics , Molecular Docking Simulation , Saponins , Tandem Mass Spectrometry , Trigonella , Trigonella/chemistry , Saponins/chemistry , Saponins/pharmacology , Saponins/analysis , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Metabolomics/methods , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/analysis , Plant Extracts/chemistry , Plant Extracts/pharmacology , Cyclooxygenase 2/metabolism
5.
Food Res Int ; 172: 113178, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37689928

ABSTRACT

This study comprehensively characterized the metabolite profiles of six lettuce varieties and established the correlation between the elucidated profiles and their antivirulence effects. A total of 195 metabolites were annotated using LC-QTOF-MS/MS metabolomics assisted by molecular networking and integrated with chemometrics. Red varieties (red longifolia and lolla rosa) demonstrated higher chlorogenic and chicoric acids suggesting their antioxidant properties. In parallel, amino acids and disaccharides were enriched in romaine longifolia rationalizing its palatable taste and nutritional potential, while crispa, capitata, and lolla bionda presented a high ß-carboline alkaloid content. The antibacterial and antihemolytic potential of all varieties against methicillin-sensitive and methicillin-resistant Staphylococcus aureus was assessed and validated by prominent downregulation of α-hemolysin transcriptional levels in both strains. Moreover, correlation analysis revealed sesquiterpenes, ß-carboline alkaloids, amino acids, and oxy-fatty acids as the main bioactives. Results emphasize lettuce significance as a functional food and nutraceutical source, and highlight varieties naturally rich in antibacterial agents to adapt breeding programs.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Lactuca , Chemometrics , Tandem Mass Spectrometry , Plant Breeding , Amino Acids , Carbolines , Chromatography, Liquid
6.
Anal Chim Acta ; 1256: 341149, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37037631

ABSTRACT

On-line aptamer affinity solid-phase extraction direct mass spectrometry (AA-SPE-MS) is presented for the rapid purification, preconcentration, and characterization of α-synuclein (α-syn), which is a protein biomarker related to Parkinson's disease. Valve-free AA-SPE-MS is easily implemented using the typical SPE microcartridges and instrumental set-up necessary for on-line aptamer affinity solid-phase extraction capillary electrophoresis-mass spectrometry (AA-SPE-CE-MS). The essential requirement is substituting the application of the separation voltage by a pressure of 100 mbar for mobilization of the eluted protein through the capillary towards the mass spectrometer. Under optimized conditions with recombinant α-syn, repeatability is good in terms of migration time and peak area (percent relative standard deviation (%RSD) values (n = 3) are 1.3 and 6.6% at 1 µg mL-1, respectively). The method is satisfactorily linear between 0.025 and 5 µg mL-1 (R2 > 0.986), and limit of detection (LOD) is 0.02 µg mL-1 (i.e. 1000, 500, and 10 times lower than by CE-MS, direct MS, and AA-SPE-CE-MS, respectively). The established AA-SPE-MS method is further compared with AA-SPE-CE-MS, including for the analysis of α-syn in blood. The comparison discloses the advantages and disadvantages of AA-SPE-MS for the rapid and sensitive targeted analysis of protein biomarkers in biological fluids.


Subject(s)
Oligonucleotides , alpha-Synuclein , Mass Spectrometry/methods , Limit of Detection , Solid Phase Extraction/methods , Biomarkers
7.
Food Res Int ; 168: 112742, 2023 06.
Article in English | MEDLINE | ID: mdl-37120197

ABSTRACT

Plant extracts have recently received increased attention as alternative sources of antimicrobial agents in the fight against multidrug-resistant bacteria. Non-targeted metabolomics liquid chromatography-quadrupole time-of-flight tandem mass spectrometry, molecular networking, and chemometrics were used to evaluate the metabolic profiles of red and green leaves of two Brassica juncea (L.) varieties, var. integrifolia (IR and IG) and var. rugosa (RR and RG), as well as to establish a relationship between the elucidated chemical profiles and antivirulence activity. In total, 171 metabolites from different classes were annotated and principal component analysis revealed higher levels of phenolics and glucosinolates in var. integrifolia leaves and color discrimination, whereas fatty acids were enriched in var. rugosa, particularly trihydroxy octadecadienoic acid. All extracts demonstrated significant antibacterial activity against Staphylococcus aureus and Enterococcus faecalis, presenting the IR leaves the highest antihemolytic activity against S. aureus (99 % inhibition), followed by RR (84 %), IG (82 %), and RG (37 %) leaves. Antivirulence of IR leaves was further validated by reduction in alpha-hemolysin gene transcription (∼4-fold). Using various multivariate data analyses, compounds positively correlated to bioactivity, primarily phenolic compounds, glucosinolates, and isothiocyanates, were also identified.


Subject(s)
Mustard Plant , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Staphylococcus aureus , Glucosinolates/pharmacology , Glucosinolates/analysis , Phenols/analysis , Vegetables
8.
Foods ; 12(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36673481

ABSTRACT

Quinoa proteins are attracting global interest for their wide amino acid profile and as a promising source for the development of biomedical treatments, including those against immune-mediated diseases. However, information about the bioactivity of quinoa proteins is scarce. In this study, a quinoa grain proteome map obtained by label-free mass spectrometry-based shotgun proteomics was investigated for the identification of quinoa grain proteins with potential immunonutritional bioactivities, including those related to cancer. After carefully examining the sequence similarities of the 1211 identified quinoa grain proteins against already described bioactive proteins from other plant organisms, 71, 48, and 3 of them were classified as antimicrobial peptides (AMPs), oxidative stress induced peptides (OSIPs), and serine-type protease inhibitors (STPIs), respectively, suggesting their potential as immunomodulatory, anti-inflammatory, and anticancer agents. In addition, data interpretation using Venn diagrams, heat maps, and scatterplots revealed proteome similarities and differences with respect to the AMPs, OSIPs, and STPIs, and the most relevant bioactive proteins in the predominant commercial quinoa grains (i.e., black, red, white (from Peru), and royal (white from Bolivia)). The presented proteomics data mining strategy allows easy screening for potentially relevant quinoa grain proteins and commercial classes for immunonutrition, as a basis for future bioactivity testing.

9.
Food Chem ; 398: 133895, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35986991

ABSTRACT

Quinoa is an Andean grain that is attracting attention worldwide as a high-quality protein-rich food. Nowadays, quinoa foodstuffs are susceptible to adulteration with cheaper cereals. Therefore, there is a need to develop novel methodologies for protein characterization of quinoa. Here, we first developed a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method to obtain characteristic mass spectra of protein extracts from 4 different commercial quinoa grains, which group different varieties marketed as black, red, white (from Peru) and royal (white from Bolivia). Then, data preprocessing and peak detection with MALDIquant allowed detecting 47 proteins (being 30 tentatively identified), the intensities of which were considered as fingerprints for multivariate data analysis. Finally, classification by partial least squares-discriminant analysis (PLS-DA) was excellent, and 34 out of the 47 proteins were critical for differentiation, confirming the potential of the methodology to obtain a reliable classification of quinoa grains based on protein fingerprinting.


Subject(s)
Chenopodium quinoa , Chemometrics , Chenopodium quinoa/chemistry , Discriminant Analysis , Multivariate Analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
10.
Methods Mol Biol ; 2531: 77-91, 2022.
Article in English | MEDLINE | ID: mdl-35941480

ABSTRACT

Peptide mapping is a routine procedure for protein characterization in proteomics. This bottom-up analysis requires digestion of proteins into peptides before liquid chromatography- or capillary zone electrophoresis-mass spectrometry (LC-MS or CZE-MS, respectively). Proteins are usually digested off-line using proteolytic enzymes, typically trypsin, in solution or immobilized on appropriate supports. As an alternative, here we describe on-line immobilized enzyme microreactor capillary zone electrophoresis-mass spectrometry (IMER-CZE-MS) for a straightforward, rapid, and efficient protein digestion followed by separation, detection, and characterization of the generated peptides.


Subject(s)
Electrophoresis, Capillary , Enzymes, Immobilized , Electrophoresis, Capillary/methods , Enzymes, Immobilized/chemistry , Mass Spectrometry , Peptide Mapping , Peptides/metabolism , Proteins , Trypsin/chemistry
11.
J Sep Sci ; 45(18): 3614-3623, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35866669

ABSTRACT

Protein profiling of major bovine milk proteins (i.e., whey and casein proteins) is of great interest in food science and technology. This complex set of protein proteoforms may vary with breed, genetics, lactation stage, health, and nutritional status of the animal. Current routine methods for bovine milk protein profiling at the intact level are typically based on capillary electrophoresis-ultraviolet, which does not allow confirming unequivocally the identity of the separated proteins. As an alternative, in this study, we describe for the first time a novel and simple capillary electrophoresis-mass spectrometry method in positive electrospray ionization mode. Under the optimized conditions, capillary electrophoresis-mass spectrometry allowed the separation and identification at the intact level of major bovine milk whey and casein proteins in less than 15 min. Furthermore, high-resolution mass spectrometry confirmed its importance in the reliable characterization of bovine milk protein proteoforms, especially those with slight molecular mass differences, such as ß-casein A1 and A2, which are relevant to unequivocally identify milk with specific ß-casein compositions (e.g., A2A2 milk, which is widely known as A2 milk). This differentiation was not possible by matrix-assisted laser desorption/ionization mass spectrometry, which provided rapidly and easily a rich but less accurate fingerprint of bovine milk proteins due to the lower mass resolution.


Subject(s)
Caseins , Milk Proteins , Animals , Caseins/chemistry , Electrophoresis, Capillary/methods , Female , Milk/chemistry , Milk Proteins/analysis , Milk Proteins/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
12.
Food Chem ; 363: 130250, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34120052

ABSTRACT

Quinoa seed proteins are of prime importance in human nutrition and in plant breeding for cultivar identification and improvement. In this study, proteins from seeds of black, red, white quinoa from Peru and white quinoa from Bolivia (also known as royal) were extracted, digested and analyzed by nano-liquid chromatography coupled to Orbitrap tandem mass spectrometry (LC-MS/MS). The raw mass spectra data were processed for identification and label-free quantification (LFQ) using MaxQuant/Andromeda against a specific quinoa database from The National Center for Biotechnology Information (NCBI). In total, 1,211 quinoa proteins (85 were uncharacterized) were identified. Inspection and visualization using Venn diagrams, heat maps and Gene Ontology (GO) graphs revealed proteome similarities and differences between the four varieties. The presented data provides the most comprehensive experimental quinoa seed proteome map existing to date in the literature, as a starting point for more specific characterization and nutritional studies of quinoa and quinoa-containing foodstuff.


Subject(s)
Chenopodium quinoa , Proteome , Chromatography, Liquid , Plant Breeding , Proteomics , Seeds/genetics , Tandem Mass Spectrometry
13.
J Proteome Res ; 20(3): 1666-1675, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33560857

ABSTRACT

With 28 potential N-glycosylation sites, human carcinoembryonic antigen (CEA) bears an extreme amount of N-linked glycosylation, and approximately 60% of its molecular mass can be attributed to its carbohydrates. CEA is often overexpressed and released by many solid tumors, including colorectal carcinomas. CEA displays an impressive heterogeneity and variability in sugar content; however, site-specific distribution of carbohydrate structures has not been reported so far. The present study investigated CEA samples purified from human colon carcinoma and human liver metastases and enabled the characterization of 21 out of 28 potential N-glycosylation sites with respect to their occupancy. The coverage was achieved by a multienzymatic digestion approach with specific enzymes, such as trypsin, endoproteinase Glu-C, and the nonspecific enzyme, Pronase, followed by analysis using sheathless CE-MS/MS. In total, 893 different N-glycopeptides and 128 unique N-glycan compositions were identified. Overall, a great heterogeneity was found both within (micro) and in between (macro) individual N-glycosylation sites. Moreover, notable differences were found on certain N-glycosylation sites between primary adenocarcinoma and metastatic tumor in regard to branching, bisection, sialylation, and fucosylation. Those features, if further investigated in a targeted manner, may pave the way toward improved diagnostics and monitoring of colorectal cancer progression and recurrence. Raw mass spectrometric data and Skyline processed data files that support the findings of this study are available in the MassIVE repository with the identifier MSV000086774 [DOI: 10.25345/C5Z50X].


Subject(s)
Carcinoembryonic Antigen , Carcinoembryonic Antigen/metabolism , Electrophoresis, Capillary , Glycopeptides/metabolism , Glycosylation , Humans , Neoplasm Recurrence, Local , Tandem Mass Spectrometry
14.
Food Chem ; 341(Pt 1): 128207, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33035861

ABSTRACT

Quinoa (Chenopodium quinoa Willd.) is an andean grain with exceptional nutritional properties that has been progressively introduced in western countries as a protein-rich super food with a broad amino acid spectrum. Quinoa is consumed as whole grain, but it is also milled to produce high-value flour, which is susceptible to adulteration. Therefore, there is a growing interest in developing novel analytical methods to get further information about quinoa at the chemical level. In this study, we developed a rapid and simple capillary electrophoresis-ultraviolet absorption diode array detection (CE-UV-DAD) method to obtain characteristic multiwavelength electrophoretic profiles of soluble protein extracts from different quinoa grain varieties. Then, advanced chemometric methods (i.e. multivariate curve resolution alternating least squares, MCR-ALS, followed by principal component analysis, PCA, and partial least squares discriminant analysis, PLS-DA) were applied to deconvolute the components present in the electropherograms and classify the quinoa varieties according to their differential protein composition.


Subject(s)
Chenopodium quinoa/chemistry , Electrophoresis, Capillary/methods , Food Analysis/methods , Peptide Mapping/methods , Peptide Mapping/statistics & numerical data , Discriminant Analysis , Electrophoresis, Capillary/statistics & numerical data , Food Analysis/statistics & numerical data , Least-Squares Analysis , Plant Proteins/analysis , Plant Proteins/chemistry , Principal Component Analysis , Ultraviolet Rays
15.
J Chromatogr A ; 1631: 461548, 2020 Nov 08.
Article in English | MEDLINE | ID: mdl-32971474

ABSTRACT

Growth hormone-releasing hormone and its analogues sermorelin, tesamorelin and CJC-1295 are included in the prohibited list of the World Antidoping Agency. These target peptides are found at very low concentrations in urine (at the pg/mL level). For this reason, hyphenated enrichment and purification steps prior to mass spectrometric detection are required. Among different strategies, immunopurification based on magnetic beads is an excellent alternative, as it offers improved selectivity when the immunoreactivity and orientation of the antibody are optimum and non-specific adsorption is minimized. However, choosing the magnetic bead surface functionalities that provide the best recoveries is not so straightforward. In this work, we have evaluated the suitability of magnetic beads with different supports, binding capacities and affinity chemistries prior analysis of human urine samples by liquid chromatography coupled to high resolution mass spectrometry using a Quadrupole-Orbitrap instrument. After optimization of the immunopurification protocol with the magnetic beads that provided better recoveries, the method was fully validated and found to be adequate considering the parameters specificity, intra- and inter-day precision (lower than 15 and 25%, respectively), matrix effect, limit of detection (0.2 ng/mL) and limit of identification (0.5 ng/mL).


Subject(s)
Doping in Sports , Substance Abuse Detection , Chromatography, High Pressure Liquid , Chromatography, Liquid , Growth Hormone-Releasing Hormone , Humans , Limit of Detection , Magnetic Phenomena , Mass Spectrometry , Reproducibility of Results
16.
J Chromatogr A ; 1622: 461097, 2020 Jul 05.
Article in English | MEDLINE | ID: mdl-32381302

ABSTRACT

In this study, polymeric monoliths with gold nanoparticles (AuNP@monolith) were investigated as microcartridges for the analysis of protein biomarkers by on-line solid-phase extraction capillary electrophoresis-mass spectrometry (SPE-CE-MS). "Plug-and-play" microcartridges (7 mm) were prepared from a glycidyl methacrylate (GMA)-based monolithic capillary column (5 cm x 250 µm i.d.), which was modified with ammonia and subsequently functionalized with gold nanoparticles (AuNPs). The performance of these novel microcartridges was evaluated with human transthyretin (TTR), which is a protein related to different types of familial amyloidotic polyneuropathies (FAP). Protein retention depended on the isoelectric point of the protein (TTR pI~5.4) and elution was achieved with a basic phosphate solution. Under the optimized conditions, limits of detection (LODs) for TTR by AuNP@monolith-SPE-CE-MS were 50 times lower than by CE-MS (5 vs 250 mg•L-1, with an ion trap (IT) mass spectrometer). The sensitivity enhancement was similar compared to SPE-CE-MS using immunoaffinity (IA) microcartridges with intact antibodies against TTR. Linearity, repeatability in migration times and peak areas, reusability, reproducibility and application to serum samples were also evaluated.


Subject(s)
Biomarkers , Electrophoresis, Capillary , Gold , Mass Spectrometry , Metal Nanoparticles , Prealbumin , Solid Phase Extraction , Biomarkers/analysis , Epoxy Compounds/chemistry , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Methacrylates/chemistry , Polymers/chemistry , Prealbumin/analysis , Reproducibility of Results
17.
Methods Mol Biol ; 1972: 57-76, 2019.
Article in English | MEDLINE | ID: mdl-30847784

ABSTRACT

The analysis of low abundant proteins in biological fluids by capillary electrophoresis (CE) is particularly problematic due to the typically poor concentration limits of detection of microscale separation techniques. Another important issue is sample matrix complexity that requires an appropriate cleanup. Here, we describe an on-line immunoaffinity solid-phase extraction capillary electrophoresis-mass spectrometry (IA-SPE-CE-MS) method for the immunoextraction, preconcentration, separation, detection, and characterization of serum transthyretin (TTR). TTR is a protein biomarker related to diverse types of amyloidosis, such as familial amyloidotic polyneuropathy type I (FAP-I), which is the most common hereditary systemic amyloidosis.


Subject(s)
Chromatography, Affinity/methods , Electrophoresis, Capillary/methods , Mass Spectrometry/methods , Online Systems , Prealbumin/analysis , Prealbumin/immunology , Serum/chemistry , Solid Phase Extraction/methods , Humans , Reference Standards
18.
J Chromatogr A ; 1579: 129-137, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30361036

ABSTRACT

We present capillary electrophoresis-mass spectrometry (CE-MS) in combination with advanced chemometric tools for the analysis of bioactive compounds in food, in particular for the identification of antihypertensive peptides in a nutraceutical derived from a bovine milk protein hydrolysate. Different extracts of the nutraceutical were analyzed by CE-MS, and the electropherograms were processed using a novel data analysis workflow that included regions of interest (ROIs) compression and multivariate curve resolution alternating least squares (MCR-ALS). MCR-ALS permitted the description of the nutraceutical extract as ten characteristic components with their electrophoretic profiles and mass spectra. Twenty-two compounds were tentatively identified as antihypertensive bovine casein fragments through a mass search in a database of bioactive peptides. The identity of 17 antihypertensive peptides was reliably confirmed by capillary electrophoresis-tandem mass spectrometry. The proposed analytical approach demonstrated the potential to obtain a characteristic and activity-related fingerprint for quality control and authentication of the antihypertensive nutraceutical.


Subject(s)
Antihypertensive Agents/isolation & purification , Dietary Supplements/analysis , Electrophoresis, Capillary , Peptides/isolation & purification , Tandem Mass Spectrometry , Animals , Cattle , Least-Squares Analysis , Milk Proteins/chemistry , Milk Proteins/metabolism , Peptides/chemistry
19.
Talanta ; 181: 87-94, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29426546

ABSTRACT

In this study, we describe a chemometric data analysis approach to assist in the interpretation of the complex datasets from the analysis of high-molecular mass oligomeric proteins by ion mobility mass spectrometry (IM-MS). The homotetrameric protein transthyretin (TTR) is involved in familial amyloidotic polyneuropathy type I (FAP-I). FAP-I is associated with a specific TTR mutant variant (TTR(Met30)) that can be easily detected analyzing the monomeric forms of the mutant protein. However, the mechanism of protein misfolding and aggregation onset, which could be triggered by structural changes in the native tetrameric protein, remains under investigation. Serum TTR from healthy controls and FAP-I patients was purified under non-denaturing conditions by conventional immunoprecipitation in solution and analyzed by IM-MS. IM-MS allowed separation and characterization of several tetrameric, trimeric and dimeric TTR gas ions due to their differential drift time. After an appropriate data pre-processing, multivariate curve resolution alternating least squares (MCR-ALS) was applied to the complex datasets. A group of seven independent components being characterized by their ion mobility profiles and mass spectra were resolved to explain the observed data variance in control and patient samples. Then, principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were considered for exploration and classification. Only four out of the seven resolved components were enough for an accurate differentiation. Furthermore, the specific TTR ions identified in the mass spectra of these components and the resolved ion mobility profiles provided a straightforward insight into the most relevant oligomeric TTR proteoforms for the disease.


Subject(s)
Amyloid Neuropathies, Familial/blood , Mutant Proteins/blood , Prealbumin/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Amyloid Neuropathies, Familial/genetics , Humans , Mutant Proteins/chemistry , Mutant Proteins/isolation & purification , Prealbumin/chemistry , Prealbumin/genetics , Protein Multimerization , Proteomics/methods , Reproducibility of Results
20.
Talanta ; 170: 224-232, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28501163

ABSTRACT

This paper describes an on-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry (IA-SPE-CE-MS) method using an immunoaffinity sorbent with Fab' antibody fragments (Fab'-IA) for the analysis of serum transthyretin (TTR), a homotetrameric protein (Mr~56,000) involved in different types of amyloidosis. The IA sorbent was prepared by covalent attachment of Fab' fragments obtained from a polyclonal IgG antibody against TTR to succinimidyl silica particles. The Fab'-IA-SPE-CE-MS methodology was first established analyzing TTR standard solutions. Under optimized conditions, repeatability and reproducibility were acceptable, the method was linear between 1 and 25µgmL-1, limits of detection (LODs) were around 0.5µgmL-1 (50-fold lower than by CE-MS, ~25µgmL-1) and different TTR conformations were observed (folded and unfolded). The applicability of the developed method to screen for familial amyloidotic polyneuropathy type I (FAP-I), which is the most common hereditary systemic amyloidosis, was evaluated analyzing serum samples from healthy controls and FAP-I patients. For the analysis of sera, the most abundant proteins were precipitated with 5% (v/v) of phenol before Fab'-IA-SPE-CE-MS. The current method enhanced our previous results for the analysis of TTR using intact antibodies immobilized on magnetic beads. It allowed a slight improvement on LODs (2-fold), the detection of proteoforms found at lower concentrations and the preparation of microcartridges with extended durability.


Subject(s)
Blood Chemical Analysis/methods , Electrophoresis, Capillary , Immunoglobulin Fab Fragments/immunology , Mass Spectrometry , Prealbumin/analysis , Solid Phase Extraction , Humans , Prealbumin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...