Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1312: 93-104, 2015.
Article in English | MEDLINE | ID: mdl-26043994

ABSTRACT

The simple technique of making tissue prints on appropriate substrate material has made possible the easy localization of proteins, nucleic acids, carbohydrates, and small molecules in a tissue-specific mode. Plant tissues can be used to produce prints revealing a remarkable amount of anatomical detail, even without staining, which might be used to record developmental changes over time. In this chapter we will focus on the protocols for the localization of proteins and glycans using antibodies or lectins, probably the most frequently used application, but the localization of other molecules is reported and the sources indicated.


Subject(s)
Immunoblotting/methods , Plant Proteins/metabolism , Cell Wall/metabolism , Plant Cells/metabolism , Plant Lectins/metabolism , Plant Proteins/immunology , Polysaccharides/metabolism , Protein Transport , Staining and Labeling
2.
Methods Mol Biol ; 536: 75-88, 2009.
Article in English | MEDLINE | ID: mdl-19378047

ABSTRACT

The simple technique of making tissue prints on appropriate substrate material has made possible the easy localization of proteins, nucleic acids, carbohydrates, and small molecules in a tissue-specific mode. Plant tissues can be used to produce prints revealing a remarkable amount of anatomical detail, even without staining, which might be used to record developmental changes over time. In this chapter we will focus on the protocols for the localization of proteins and glycans using antibodies or lectins, probably the most frequently used application, but the localization of other molecules is reported and the sources indicated.


Subject(s)
Immunoblotting/methods , Plant Lectins/analysis , Plant Proteins/analysis , Plants , Animals , Immunoblotting/instrumentation , Plants/anatomy & histology , Plants/chemistry
3.
Plant Methods ; 2: 10, 2006 May 27.
Article in English | MEDLINE | ID: mdl-16729891

ABSTRACT

BACKGROUND: The ultimate goal of proteomic analysis of a cell compartment should be the exhaustive identification of resident proteins; excluding proteins from other cell compartments. Reaching such a goal closely depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific difficulties: (i) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure, (ii) polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins. Several reported procedures to isolate cell walls for proteomic analyses led to the isolation of a high proportion (more than 50%) of predicted intracellular proteins. Since isolated cell walls should hold secreted proteins, one can imagine alternative procedures to prepare cell walls containing a lower proportion of contaminant proteins. RESULTS: The rationales of several published procedures to isolate cell walls for proteomics were analyzed, with regard to the bioinformatic-predicted subcellular localization of the identified proteins. Critical steps were revealed: (i) homogenization in low ionic strength acid buffer to retain CWP, (ii) purification through increasing density cushions, (iii) extensive washes with a low ionic strength acid buffer to retain CWP while removing as many cytosolic proteins as possible, and (iv) absence of detergents. A new procedure was developed to prepare cell walls from etiolated hypocotyls of Arabidopsis thaliana. After salt extraction, a high proportion of proteins predicted to be secreted was released (73%), belonging to the same functional classes as proteins identified using previously described protocols. Finally, removal of intracellular proteins was obtained using detergents, but their amount represented less than 3% in mass of the total protein extract, based on protein quantification. CONCLUSION: The new cell wall preparation described in this paper gives the lowest proportion of proteins predicted to be intracellular when compared to available protocols. The application of its principles should lead to a more realistic view of the cell wall proteome, at least for the weakly bound CWP extractable by salts. In addition, it offers a clean cell wall preparation for subsequent extraction of strongly bound CWP.

4.
Trends Plant Sci ; 11(1): 33-9, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16356755

ABSTRACT

Cell wall proteins are essential constituents of plant cell walls; they are involved in modifications of cell wall components, wall structure, signaling and interactions with plasma membrane proteins at the cell surface. The application of proteomic approaches to the cell wall compartment raises important questions: are there technical problems specific to cell wall proteomics? What kinds of proteins can be found in Arabidopsis walls? Are some of them unexpected? What sort of post-translational modifications have been characterized in cell wall proteins to date? The purpose of this review is to discuss the experimental results obtained to date using proteomics, as well as some of the new questions challenging future research.


Subject(s)
Cell Wall/chemistry , Plant Cells , Plant Proteins/metabolism , Plants/metabolism , Proteomics , Gene Expression Profiling , Gene Expression Regulation, Plant
5.
J Exp Bot ; 54(381): 213-21, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12493849

ABSTRACT

The membrane receptor protein from pea, peabp80, has been shown to function by in vitro binding studies, and in vivo in yeast mutant, as a vacuolar sorting receptor (VSR). Families of proteins with homology to peabp80 have been identified in many plants including Arabidopsis: The family of membrane receptors, atbp80a-f (Arabidopsis thaliana binding protein 80 kDa) is highly homologous to peabp80 and may also function as vacuolar sorting receptors. Interactions with vacuolar sorting determinants have been shown only in vitro for atbp80b. In this paper, atbp80b was over- and under-expressed in Arabidopsis. Transgenic plants that over-expressed atbp80b showed no visible phenotype. However, antisense transformants were defective in germination. In non-germinating antisense transformants the embryo appeared to be normal, but, using several methods, it was not possible to rescue the non-germinating seeds, indicating that the mechanisms were probably independent of a seed-coat-imposed inhibition. To make a correlation between the lack of germination and gene expression, transcription analysis of all atbp80 genes was performed in the non-germinating antisense seeds indicating that all the normally transcribed genes were not detected. Then, a gene expression study of atbp80s genes was carried-out following seed imbibition and in various organs during wild-type plant development showing that all the genes from the family were transcribed and differentially expressed.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Germination/physiology , Antisense Elements (Genetics)/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression , Germination/genetics , Plants, Genetically Modified , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...