Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; : PHYTO11230435LE, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38437711

ABSTRACT

We revisit the foundations of the Horsfall-Barratt (HB) scale, a widely cited and applied plant disease visual assessment tool introduced in 1945, a full 37 years prior to T. T. Hebert's 1982 critique that raised concerns regarding the scale's rationale, particularly its reliance on the Weber-Fechner law and visual perception assumptions. Although use of the HB scale and similar ordinal scales persists, comprehensive studies have revealed that direct visual estimation using percentage scales often proves more accurate and reliable. Challenges remain, such as biases due to estimator subjectivity and the potential for misclassification. The logarithmic assumptions of the HB scale have been debunked, and the importance of choosing appropriate interval sizes and numbers of classes in developing ordinal scales is emphasized. Analyzing ordinal scale data appropriately is crucial, and recent advances offer promising methods that reduce type II error rates. The closely related disease severity index is noted to have its shortcomings and potential for misuse. The letter underscores the need for continuous refinement and critical evaluation of disease assessment methodologies.

2.
Phytopathology ; 114(5): 910-916, 2024 May.
Article in English | MEDLINE | ID: mdl-38330057

ABSTRACT

The landscape of scientific publishing is experiencing a transformative shift toward open access, a paradigm that mandates the availability of research outputs such as data, code, materials, and publications. Open access provides increased reproducibility and allows for reuse of these resources. This article provides guidance for best publishing practices of scientific research, data, and associated resources, including code, in The American Phytopathological Society journals. Key areas such as diagnostic assays, experimental design, data sharing, and code deposition are explored in detail. This guidance aligns with that observed by other leading journals. We hope the information assembled in this paper will raise awareness of best practices and enable greater appraisal of the true effects of biological phenomena in plant pathology.


Subject(s)
Plant Pathology , Reproducibility of Results , Publishing/standards , Guidelines as Topic , Access to Information , Information Dissemination
3.
Phytopathology ; 114(1): 226-240, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37399001

ABSTRACT

Wheat blast, caused by Pyricularia oryzae Triticum (PoT), is an emerging threat to global wheat production. The current understanding of the population biology of the pathogen and epidemiology of the disease has been based on phylogenomic studies that compared the wheat blast pathogen with isolates collected from grasses that were invasive to Brazilian wheat fields. In this study, we performed a comprehensive sampling of blast lesions in wheat crops and endemic grasses found in and away from wheat fields in Minas Gerais. A total of 1,368 diseased samples were collected (976 leaves of wheat and grasses and 392 wheat heads), which yielded a working collection of 564 Pyricularia isolates. We show that, contrary to earlier implications, PoT was rarely found on endemic grasses, and, conversely, members of grass-adapted lineages were rarely found on wheat. Instead, most lineages were host-specialized, with constituent isolates usually grouping according to their host of origin. With regard to the dominant role proposed for signalgrass in wheat blast epidemiology, we found only one PoT member in 67 isolates collected from signalgrass grown away from wheat fields and only three members of Urochloa-adapted lineages among hundreds of isolates from wheat. Cross-inoculation assays on wheat and a signalgrass used in pastures (U. brizantha) suggested that the limited cross-infection observed in the field may be due to innate compatibility differences. Whether or not the observed level of cross-infection would be sufficient to provide an inoculum reservoir, or serve as a bridge between wheat growing regions, is questionable and, therefore, deserves further investigation.


Subject(s)
Ascomycota , Magnaporthe , Triticum , Poaceae , Brazil , Plant Diseases
4.
Phytopathology ; 114(1): 220-225, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37486092

ABSTRACT

Wheat blast, caused by the Pyricularia oryzae Triticum lineage (PoT), first emerged in Brazil and quickly spread to neighboring countries. Its recent appearance in Bangladesh and Zambia highlights a need to understand the disease's population biology and epidemiology so as to mitigate pandemic outbreaks. Current knowledge is mostly based on characterizations of Brazilian wheat blast isolates and comparison with isolates from non-wheat, endemic grasses. These foregoing studies concluded that the wheat blast population lacks host specificity and, as a result, undergoes extensive gene flow with populations infecting non-wheat hosts. Additionally, based on genetic similarity between wheat blast and isolates infecting Urochloa species, it was proposed that the disease originally emerged via a host jump from this grass and that Urochloa likely plays a central role in wheat blast epidemiology owing to its widespread use as a pasture grass. However, due to inconsistencies with broader phylogenetic studies, we suspected that these seminal studies had not actually sampled the populations normally found on endemic grasses and, instead, had repeatedly isolated members of PoT and the related Lolium pathogen lineage (PoL1). Re-analysis of the Brazilian data as part of a comprehensive, global, phylogenomic dataset that included a small number of South American isolates sampled away from wheat confirmed our suspicion and identified four new P. oryzae lineages on grass hosts. As a result, the conclusions underpinning current understanding in wheat blast's evolution, population biology, and epidemiology are unsubstantiated and could be equivocal.


Subject(s)
Ascomycota , Magnaporthe , Triticum , Triticum/genetics , Phylogeny , Plant Diseases/genetics , Poaceae
5.
Phytopathology ; 113(7): 1159-1170, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36624724

ABSTRACT

Open research practices have been highlighted extensively during the last 10 years in many fields of scientific study as essential standards needed to promote transparency and reproducibility of scientific results. Scientific claims can only be evaluated based on how protocols, materials, equipment, and methods were described; data were collected and prepared; and analyses were conducted. Openly sharing protocols, data, and computational code is central to current scholarly dissemination and communication, but in many fields, including plant pathology, adoption of these practices has been slow. We randomly selected 450 articles published from 2012 to 2021 across 21 journals representative of the plant pathology discipline and assigned them scores reflecting their openness and computational reproducibility. We found that most of the articles did not follow protocols for open science and failed to share data or code in a reproducible way. We propose that use of open-source tools facilitates computationally reproducible work and analyses, benefitting not just readers but the authors as well. Finally, we provide ideas and suggest tools to promote open, reproducible computational research practices among plant pathologists. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Plant Diseases , Reproducibility of Results
6.
Toxins (Basel) ; 13(10)2021 10 14.
Article in English | MEDLINE | ID: mdl-34679018

ABSTRACT

Mycotoxins in small grains are a significant and long-standing problem. These contaminants may be produced by members of several fungal genera, including Alternaria, Aspergillus, Fusarium, Claviceps, and Penicillium. Interventions that limit contamination can be made both pre-harvest and post-harvest. Many problems and strategies to control them and the toxins they produce are similar regardless of the location at which they are employed, while others are more common in some areas than in others. Increased knowledge of host-plant resistance, better agronomic methods, improved fungicide management, and better storage strategies all have application on a global basis. We summarize the major pre- and post-harvest control strategies currently in use. In the area of pre-harvest, these include resistant host lines, fungicides and their application guided by epidemiological models, and multiple cultural practices. In the area of post-harvest, drying, storage, cleaning and sorting, and some end-product processes were the most important at the global level. We also employed the Nominal Group discussion technique to identify and prioritize potential steps forward and to reduce problems associated with human and animal consumption of these grains. Identifying existing and potentially novel mechanisms to effectively manage mycotoxin problems in these grains is essential to ensure the safety of humans and domesticated animals that consume these grains.


Subject(s)
Edible Grain/microbiology , Food Contamination/prevention & control , Mycotoxins , Triticum/microbiology , Crop Production/methods , Food Handling/methods , Food Storage/methods , Fungicides, Industrial , Plant Diseases/microbiology
7.
J Fungi (Basel) ; 7(8)2021 Aug 08.
Article in English | MEDLINE | ID: mdl-34436185

ABSTRACT

The effective management of Fusarium wilt of bananas (FWB) depends on the knowledge of the disease dynamics in time and space. The objectives of this work were: to estimate disease intensity and impact, and to investigate the spatial and temporal dynamics of FWB. Fields planted with Silk (n = 10), Pome (n = 17), or Cavendish (n = 3) banana subgroups were surveyed in Brazil, totaling 95 ha. In each field, all plants were visually assessed, and diseased plants were georeferenced. The incidence of FWB and the impact of the disease on the yield on a regional scale were estimated. Spatial patterns were analyzed using quadrat- and distance-based methods. FWB incidence ranged from 0.09% to 41.42%, being higher in Silk fields (median = 14.26%). Impacts of epidemics on yield ranged from 18.4 to 8192.5 kg ha-1 year-1, with an average of 1856.7 kg ha-1 year-1. The higher economic impact of the disease was observed on Silk cultivar with an average loss of USD 1974.2 ha-1 year-1. Overall, estimated losses increased on average by USD 109.8 ha-1 year-1 at each 1% of incidence. Aggregation of FWB was detected by all analytical methods in 13 fields (1 of Cavendish, 11 of Pome, and 1 of Silk). In the other 17 fields, at least one analytical method did not reject the null hypothesis of randomness. One field (5 ha), composed of six plots, was selected for spatial and temporal studies during two years with bi-monthly assessments. A sigmoidal curve represented the FWB progress and the Gompertz model best-fitted disease progress. The level of aggregation varied over time, and evidence of secondary infection to neighboring and distant plants was detected. FWB is a widespread problem in Brazil and yield losses can be of high magnitude. Epidemiology-based management strategies can now be better established.

SELECTION OF CITATIONS
SEARCH DETAIL
...