Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(29): eadg0278, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37478180

ABSTRACT

Intrinsic processes such as mesoscale turbulence have recently been proved as important as atmospheric variability in causing variations in ocean bottom pressure (pb). Intrinsic processes are also known to generate random variability on scales larger than the mesoscale through inverse energy cascades or large-scale baroclinic instability. Here, model analyses reveal a truly global-scale, intrinsic pb mode of variability at monthly time scales that relies on a different mechanism. The intrinsic mode has largest amplitudes around Drake Passage and opposite polarity between the Southern Ocean and Atlantic/Arctic oceans. Its signature is consistent with localized eddy-driven pb anomalies of opposite sign near Drake Passage that then adjust freely in the rest of the ocean via barotropic wave processes. This intrinsic mode seems consistent with observed pb variability.

2.
J Geophys Res Oceans ; 127(6): e2021JC018275, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35859672

ABSTRACT

The relative contributions of local and remote wind stress and air-sea buoyancy forcing to sea-level variations along the East Coast of the United States are not well quantified, hindering the understanding of sea-level predictability there. Here, we use an adjoint sensitivity analysis together with an Estimating the Circulation and Climate of the Ocean (ECCO) ocean state estimate to establish the causality of interannual variations in Nantucket dynamic sea level. Wind forcing explains 67% of the Nantucket interannual sea-level variance, while wind and buoyancy forcing together explain 97% of the variance. Wind stress contribution is near-local, primarily from the New England shelf northeast of Nantucket. We disprove a previous hypothesis about Labrador Sea wind stress being an important driver of Nantucket sea-level variations. Buoyancy forcing, as important as wind stress in some years, includes local contributions as well as remote contributions from the subpolar North Atlantic that influence Nantucket sea level a few years later. Our rigorous adjoint-based analysis corroborates previous correlation-based studies indicating that sea-level variations in the subpolar gyre and along the United States northeast coast can both be influenced by subpolar buoyancy forcing. Forward perturbation experiments further indicate remote buoyancy forcing affects Nantucket sea level mostly through slow advective processes, although coastally trapped waves can cause rapid Nantucket sea level response within a few weeks.

3.
J Geod ; 95(9): 110, 2021.
Article in English | MEDLINE | ID: mdl-34720453

ABSTRACT

We revisit the problem of modeling the ocean's contribution to rapid, non-tidal Earth rotation variations at periods of 2-120 days. Estimates of oceanic angular momentum (OAM, 2007-2011) are drawn from a suite of established circulation models and new numerical simulations, whose finest configuration is on a ∘ grid. We show that the OAM product by the Earth System Modeling Group at GeoForschungsZentrum Potsdam has spurious short period variance in its equatorial motion terms, rendering the series a poor choice for describing oceanic signals in polar motion on time scales of less than ∼ 2 weeks. Accounting for OAM in rotation budgets from other models typically reduces the variance of atmosphere-corrected geodetic excitation by ∼ 54% for deconvolved polar motion and by ∼ 60% for length-of-day. Use of OAM from the ∘ model does provide for an additional reduction in residual variance such that the combined oceanic-atmospheric effect explains as much as 84% of the polar motion excitation at periods < 120 days. Employing statistical analysis and bottom pressure changes from daily Gravity Recovery and Climate Experiment solutions, we highlight the tendency of ocean models run at a 1 ∘ grid spacing to misrepresent topographically constrained dynamics in some deep basins of the Southern Ocean, which has adverse effects on OAM estimates taken along the 90 ∘ meridian. Higher model resolution thus emerges as a sensible target for improving the oceanic component in broader efforts of Earth system modeling for geodetic purposes.

4.
J Geophys Res Oceans ; 124(9): 6435-6458, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31763114

ABSTRACT

Scientific and societal interest in the relationship between the Atlantic Meridional Overturning Circulation (AMOC) and U.S. East Coast sea level has intensified over the past decade, largely due to (1) projected, and potentially ongoing, enhancement of sea level rise associated with AMOC weakening and (2) the potential for observations of U.S. East Coast sea level to inform reconstructions of North Atlantic circulation and climate. These implications have inspired a wealth of model- and observation-based analyses. Here, we review this research, finding consistent support in numerical models for an antiphase relationship between AMOC strength and dynamic sea level. However, simulations exhibit substantial along-coast and intermodel differences in the amplitude of AMOC-associated dynamic sea level variability. Observational analyses focusing on shorter (generally less than decadal) timescales show robust relationships between some components of the North Atlantic large-scale circulation and coastal sea level variability, but the causal relationships between different observational metrics, AMOC, and sea level are often unclear. We highlight the importance of existing and future research seeking to understand relationships between AMOC and its component currents, the role of ageostrophic processes near the coast, and the interplay of local and remote forcing. Such research will help reconcile the results of different numerical simulations with each other and with observations, inform the physical origins of covariability, and reveal the sensitivity of scaling relationships to forcing, timescale, and model representation. This information will, in turn, provide a more complete characterization of uncertainty in relevant relationships, leading to more robust reconstructions and projections.

5.
Nat Commun ; 10(1): 3445, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31371727

ABSTRACT

Salinity is an essential proxy for estimating the global net freshwater input into the ocean. Due to the limited spatial and temporal coverage of the existing salinity measurements, previous studies of global salinity changes focused mostly on the surface and upper oceans. Here, we examine global ocean salinity changes and ocean vertical salt fluxes over the full depth in a dynamically consistent and data-constrained ocean state estimate. The changes of the horizontally averaged salinity display a vertically layered structure, consistent with the profiles of the ocean vertical salt fluxes. For salinity changes in the relatively well-observed upper ocean, the contribution of vertical exchange of salt can be on the same order of the net surface freshwater input. The vertical redistribution of salt thus should be considered in inferring changes in global ocean salinity and the hydrological cycle from the surface and upper ocean measurements.

6.
Nature ; 564(7736): 400-404, 2018 12.
Article in English | MEDLINE | ID: mdl-30568196

ABSTRACT

Identifying the causes of historical trends in relative sea level-the height of the sea surface relative to Earth's crust-is a prerequisite for predicting future changes. Rates of change along the eastern coast of the USA (the US East Coast) during the past century were spatially variable, and relative sea level rose faster along the Mid-Atlantic Bight than along the South Atlantic Bight and the Gulf of Maine. Past studies suggest that Earth's ongoing response to the last deglaciation1-5, surface redistribution of ice and water5-9 and changes in ocean circulation9-13 contributed considerably to this large-scale spatial pattern. Here we analyse instrumental data14,15 and proxy reconstructions4,12 using probabilistic methods16-18 to show that vertical motions of Earth's crust exerted the dominant control on regional spatial differences in relative sea-level trends along the US East Coast during 1900-2017, explaining most of the large-scale spatial variance. Rates of coastal subsidence caused by ongoing relaxation of the peripheral forebulge associated with the last deglaciation are strongest near North Carolina, Maryland and Virginia. Such structure indicates that Earth's elastic lithosphere is thicker than has been assumed in other models19-22. We also find a substantial coastal gradient in relative sea-level trends over this period that is unrelated to deglaciation and suggests contributions from twentieth-century redistribution of ice and water. Our results indicate that the majority of large-scale spatial variation in long-term rates of relative sea-level rise on the US East Coast is due to geological processes that will persist at similar rates for centuries.

7.
Proc Natl Acad Sci U S A ; 115(30): 7729-7734, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29987009

ABSTRACT

Identifying physical processes responsible for historical coastal sea-level changes is important for anticipating future impacts. Recent studies sought to understand the drivers of interannual to multidecadal sea-level changes on the United States Atlantic and Gulf coasts. Ocean dynamics, terrestrial water storage, vertical land motion, and melting of land ice were highlighted as important mechanisms of sea-level change along this densely populated coast on these time scales. While known to exert an important control on coastal ocean circulation, variable river discharge has been absent from recent discussions of drivers of sea-level change. We update calculations from the 1970s, comparing annual river-discharge and coastal sea-level data along the Gulf of Maine, Mid-Atlantic Bight, South Atlantic Bight, and Gulf of Mexico during 1910-2017. We show that river-discharge and sea-level changes are significantly correlated ([Formula: see text]), such that sea level rises between 0.01 and 0.08 cm for a 1 [Formula: see text] annual river-discharge increase, depending on region. We formulate a theory that describes the relation between river-discharge and halosteric sea-level changes (i.e., changes in sea level related to salinity) as a function of river discharge, Earth's rotation, and density stratification. This theory correctly predicts the order of observed increment sea-level change per unit river-discharge anomaly, suggesting a causal relation. Our results have implications for remote sensing, climate modeling, interpreting Common Era proxy sea-level reconstructions, and projecting coastal flood risk.

8.
Ann Rev Mar Sci ; 5: 21-46, 2013.
Article in English | MEDLINE | ID: mdl-22809188

ABSTRACT

Regional sea level changes can deviate substantially from those of the global mean, can vary on a broad range of timescales, and in some regions can even lead to a reversal of long-term global mean sea level trends. The underlying causes are associated with dynamic variations in the ocean circulation as part of climate modes of variability and with an isostatic adjustment of Earth's crust to past and ongoing changes in polar ice masses and continental water storage. Relative to the coastline, sea level is also affected by processes such as earthquakes and anthropogenically induced subsidence. Present-day regional sea level changes appear to be caused primarily by natural climate variability. However, the imprint of anthropogenic effects on regional sea level-whether due to changes in the atmospheric forcing or to mass variations in the system-will grow with time as climate change progresses, and toward the end of the twenty-first century, regional sea level patterns will be a superposition of climate variability modes and natural and anthropogenically induced static sea level patterns. Attribution and predictions of ongoing and future sea level changes require an expanded and sustained climate observing system.


Subject(s)
Air Conditioning , Hot Temperature , Human Activities , Oceans and Seas , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...