Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 921: 171067, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38378055

ABSTRACT

Saltmarsh restoration such as managed realignment (MR) projects often include excavation of simplified tidal creek networks to improve drainage and marsh functioning, but their design is based on limited evidence. This paper compares the morphological evolution of creek networks in current MR projects in the UK with creek networks in natural saltmarshes, in order to provide improved guidance. The evolution of creek networks was monitored for 2-20 years post-breach at 10 MR sites across the UK by semi-automatically extracting 12 morphological creek parameters from lidar. The rates of creek evolution in MR sites are linked to the initial tidal, morphological and sedimentological conditions using principal component analysis, then compared with power law relationships of morphological equilibrium defined from 13 mature natural saltmarshes. MR creeks evolved into larger, more complex, better distributed systems, with a total creek length and volume statistically similar to their natural counterparts. However, the creek volume remains poorly distributed, with a mean distance between creeks ranging from 33 to 101 m versus 5-15 m for natural mature saltmarshes. MR creeks are also clustered around the breach area, leaving the marsh interior poorly drained. MR creek network morphologies remain strongly influenced by the initial creek template, as evidenced by unnaturally straight creeks inherited from former drainage ditches. A combination of external conditions (i.e., tidal range, sediment concentration in the wider estuary) and local conditions (i.e., site elevation, topographical heterogeneity, soil compaction) controls how easily creeks can form within MR sites. This in turn determines the amount of engineering effort required to help achieve reference site conditions. The end goal of creek design is to create MR sites that closely resemble reference site conditions, however the final design is also likely to be affected by a range of practical factors (e.g. engineering/cost) unique to each site and project.

2.
Sci Data ; 9(1): 144, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365671

ABSTRACT

Coastal wetlands provide crucial ecosystem services including flood protection and carbon storage, but are being lost rapidly worldwide to the combined effects of sea-level rise, erosion and coastal urbanisation. Managed Realignment (MR) aims to mitigate for these losses by restoring reclaimed land to tidal influence. Data of creek evolution is critical to assess the performance of design strategies and improve design and implementation practices. This data descriptor provides a dataset of the horizontal morphological evolution of creek systems from various initial conditions in 10 MR schemes across the UK. Using a semi-automated workflow, morphological creek parameters were extracted from 52 lidar datasets at 1 m horizontal resolution spanning 2 to 20 years post-breach. This constitutes the most comprehensive systematic monitoring of MR creek morphology to date. The dataset will assist future MR design and provide baseline morphological information for ecological and biogeochemical surveying.

SELECTION OF CITATIONS
SEARCH DETAIL
...