Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Phys Chem Chem Phys ; 18(1): 141-8, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26603765

ABSTRACT

Mg-Ti nanostructured samples with different Ti contents were prepared via compaction of nanoparticles grown by inert gas condensation with independent Mg and Ti vapour sources. The growth set-up offered the option to perform in situ hydrogen absorption before compaction. Structural and morphological characterisation was carried out by X-ray diffraction, energy dispersive spectroscopy and electron microscopy. The formation of an extended metastable solid solution of Ti in hcp Mg was detected up to 15 at% Ti in the as-grown nanoparticles, while after in situ hydrogen absorption, phase separation between MgH2 and TiH2 was observed. At a Ti content of 22 at%, a metastable Mg-Ti-H fcc phase was observed after in situ hydrogen absorption. The co-evaporation of Mg and Ti inhibited nanoparticle coalescence and crystallite growth in comparison with the evaporation of Mg only. In situ hydrogen absorption was beneficial to subsequent hydrogen behaviour, studied by high pressure differential scanning calorimetry and isothermal kinetics. A transformed fraction of 90% was reached within 100 s at 300 °C during both hydrogen absorption and desorption. The enthalpy of hydride formation was not observed to differ from bulk MgH2.

2.
Environ Sci Pollut Res Int ; 22(10): 7641-52, 2015 May.
Article in English | MEDLINE | ID: mdl-25801368

ABSTRACT

The Bureau Commun de Référence (BCR) sequential extraction scheme and micro-synchrotron-based X-ray fluorescence (µ-SXRF) analysis were used to determine the Cu fractionation in a calcareous vineyard soil and a synthetic soil (mixture of seven constituents: calcite, birnessite, ferrihydrite, goethite, lignocellulosic residue, kaolinite, and quartz) at different Cu contamination rates (190, 1270, and 6350 mg kg(-1) of Cu) and aging times (1, 30, 92, and 181 days). The Cu distribution in the spiked vineyard and synthetic soils was different from the original vineyard one and was influenced by the loading level. The newly added Cu was preferentially present in the acid soluble fraction. Aging of the contaminated vineyard and synthetic soils during 6 months led to the redistribution of Cu from the weakly bound acid soluble fraction to the strongly bound reducible one. The evolution with time could satisfactorily be simulated by the Elovich diffusion model for the synthetic soils. It was less significant as less marked in the contaminated vineyard soil than in the synthetic one, even though the trends observed in both were similar. This study supported the hypothesis that "simple" synthetic models could be used to approach the Cu fractionation and its evolution with time in vineyard soils.


Subject(s)
Copper/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Agriculture , Chemical Fractionation , Models, Theoretical , Time Factors , Vitis
3.
J Environ Monit ; 8(10): 1069-77, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17240913

ABSTRACT

Due to the complex nature of landfill leachates, metal and metalloid analyses prove to be tricky and suffer from a lack of standard protocols. A complete approach has been adopted to investigate the influence of the different steps during the sample processing of French landfill leachates. The validation of the entire protocol has been achieved using a laboratory reference material. This material, which is a real landfill leachate, is representative of real samples. Its evaluation has allowed a quality control for metal and metalloid analyses in landfill leachates. Precautions concerning storage temperature, aeration and filtration are proposed to perform accurate metal analyses in these complex matrices. The sample processing has been applied to the seasonal monitoring of a French landfill. The assessment of major leachate metallic contaminants such as As, Cr, Sb, Sn, has been performed by evaluating the relative enrichment of metals and metalloids in comparison with rain water and groundwater. In addition, hydrological data are useful and complementary information for pointing out the main factors affecting metal concentrations and thus their potential remobilisation pathways.


Subject(s)
Metals/analysis , Water Pollutants, Chemical/analysis , Arsenic/analysis , Environmental Monitoring , Mass Spectrometry , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...