Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891822

ABSTRACT

In this review we examine the functionally diverse ATPase associated with various cellular activities (AAA-ATPase), valosin-containing protein (VCP/p97), its molecular functions, the mutational landscape of VCP and the phenotypic manifestation of VCP disease. VCP is crucial to a multitude of cellular functions including protein quality control, endoplasmic reticulum-associated degradation (ERAD), autophagy, mitophagy, lysophagy, stress granule formation and clearance, DNA replication and mitosis, DNA damage response including nucleotide excision repair, ATM- and ATR-mediated damage response, homologous repair and non-homologous end joining. VCP variants cause multisystem proteinopathy, and pathology can arise in several tissue types such as skeletal muscle, bone, brain, motor neurons, sensory neurons and possibly cardiac muscle, with the disease course being challenging to predict.


Subject(s)
Phenotype , Valosin Containing Protein , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Humans , Animals , Mutation , Autophagy/genetics , DNA Repair
2.
Life Sci Alliance ; 6(5)2023 05.
Article in English | MEDLINE | ID: mdl-36914268

ABSTRACT

Single-cell technologies are a method of choice to obtain vast amounts of cell-specific transcriptional information under physiological and diseased states. Myogenic cells are resistant to single-cell RNA sequencing because of their large, multinucleated nature. Here, we report a novel, reliable, and cost-effective method to analyze frozen human skeletal muscle by single-nucleus RNA sequencing. This method yields all expected cell types for human skeletal muscle and works on tissue frozen for long periods of time and with significant pathological changes. Our method is ideal for studying banked samples with the intention of studying human muscle disease.


Subject(s)
Cell Nucleus , Gene Expression Profiling , Humans , RNA-Seq/methods , Gene Expression Profiling/methods , Cell Nucleus/genetics , Cell Nucleus/metabolism , Sequence Analysis, RNA/methods , Muscle, Skeletal
3.
Neuromuscul Disord ; 32(8): 643-653, 2022 08.
Article in English | MEDLINE | ID: mdl-35850946

ABSTRACT

The diagnosis of adult-onset genetic muscle diseases is challenging because of the diversity of clinical phenotypes, findings on muscle biopsy that may be nonspecific, and the large number of genetic causes. Even with thorough investigation, the diagnostic yield for genetic testing in these populations is very low, and the distinction from acquired conditions such as sporadic inclusion body myositis [sIBM] can also prove difficult. In this study, we analysed whole transcriptome data generated from RNA isolated from muscle biopsy tissues, from a cohort of 16 participants with sIBM and other histologic diagnoses. Our objective was to identify candidate RNA biomarkers that could be an adjunctive tool in differentiating these conditions. Principal component analysis was able to delineate the groups based on their histologic diagnoses. Gene ontology and pathway analyses demonstrated dysregulation of immune pathways in sIBM. In mitochondrial myopathy we observed upregulation of FGF21, GDF15, ASNS and TRIB3, which are known candidate biomarkers for mitochondrial myopathy. Novel findings included the identification of transcripts of unknown function that were dysregulated in myofibrillar myopathy [JPX], dystrophic changes [MEG3], and mitochondrial myopathy [GAS5]. We suggest future investigations with larger cohorts of participants to confirm the findings of this study, with further directed experiments to determine the role of novel transcripts in disease pathogenesis.


Subject(s)
Myositis, Inclusion Body , Biomarkers , Biopsy , Gene Expression Profiling , Humans , Muscle, Skeletal/pathology , Myositis, Inclusion Body/diagnosis , Myositis, Inclusion Body/genetics , Myositis, Inclusion Body/pathology , RNA
4.
Genes (Basel) ; 13(6)2022 05 27.
Article in English | MEDLINE | ID: mdl-35741724

ABSTRACT

In this work, we review clinical features and genetic diagnosis of diseases caused by mutations in the gene encoding valosin-containing protein (VCP/p97), the functionally diverse AAA-ATPase. VCP is crucial to a multitude of cellular functions including protein quality control, stress granule formation and clearance, and genomic integrity functions, among others. Pathogenic mutations in VCP cause multisystem proteinopathy (VCP-MSP), an autosomal dominant, adult-onset disorder causing dysfunction in several tissue types. It can result in complex neurodegenerative conditions including inclusion body myopathy, frontotemporal dementia, amyotrophic lateral sclerosis, or combinations of these. There is also an association with other neurodegenerative phenotypes such as Alzheimer-type dementia and Parkinsonism. Non-neurological presentations include Paget disease of bone and may also include cardiac dysfunction. We provide a detailed discussion of genotype-phenotype correlations, recommendations for genetic diagnosis, and genetic counselling implications of VCP-MSP.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Osteitis Deformans , Valosin Containing Protein , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Humans , Mutation , Osteitis Deformans/diagnosis , Osteitis Deformans/genetics , Osteitis Deformans/pathology , Valosin Containing Protein/genetics
5.
Neurol Genet ; 5(4): e339, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31403078

ABSTRACT

OBJECTIVE: Our goal was to perform a systematic review of the literature to demonstrate the prevalence of cardiac abnormalities identified using cardiac investigations in patients with mitochondrial myopathy (MM). METHODS: This systematic review surveys the available evidence for cardiac investigations in MM from a total of 21 studies including 825 participants. Data were stratified by genetic mutation and clinical syndrome. RESULTS: We identified echocardiogram and ECG as the principal screening modalities that identify cardiac structural (29%) and conduction abnormalities (39%) in various MM syndromes. ECG abnormalities were more prevalent in patients with m.3243A>G mutations than other gene defects, and patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) had a higher prevalence of ECG abnormalities than patients with other clinical syndromes. Echocardiogram abnormalities were significantly more prevalent in patients with m.3243A>G or m.8344A>G mutations compared with other genetic mutations. Similarly, MELAS and MERRF had a higher prevalence compared with other syndromes. We observed a descriptive finding of an increased prevalence of ECG abnormalities in pediatric patients compared with adults. CONCLUSIONS: This analysis supports the presence of a more severe cardiac phenotype in MELAS and myoclonic epilepsy with ragged red fibres syndromes and with their commonly associated genetic mutations (m.3243A>G and m.8344A>G). This provides the first evidence basis on which to provide more intensive cardiac screening for patients with certain clinical syndromes and genetic mutations. However, the data are based on a small number of studies. We recommend further studies of natural history, therapeutic response, pediatric participants, and cardiac MRI as areas for future investigation.

6.
J Neurogenet ; 33(1): 27-32, 2019 03.
Article in English | MEDLINE | ID: mdl-30747022

ABSTRACT

Hereditary spastic paraplegias (HSPs) are a diverse group of genetic conditions with variable severity and onset age. From a neurogenetic clinic, we identified 14 patients with very late-onset HSP, with symptoms starting after the age of 35. In this cohort, sequencing of known genetic causes was performed using clinically available HSP sequencing panels. We identified 4 patients with mutations in SPG7 and 3 patients with SPAST mutations, representing 50% of the cohort and indicating a very high diagnostic yield. In the SPG7 group, we identified novel variants in two patients. We have also identified two novel mutations in the SPAST group. We present sequencing data from cDNA and RT-qPCR to support the pathogenicity of these variants, and provide observations regarding the poor genotype-phenotype correlation in these conditions that should be the subject of future study.


Subject(s)
ATPases Associated with Diverse Cellular Activities/genetics , Metalloendopeptidases/genetics , Spastic Paraplegia, Hereditary/genetics , Spastin/genetics , Adult , Age of Onset , Genetic Association Studies , Genotype , Humans , Middle Aged , Phenotype
7.
Front Neurol ; 9: 147, 2018.
Article in English | MEDLINE | ID: mdl-29599744

ABSTRACT

OBJECTIVE: The aim of this study is to identify the molecular defect of three unrelated individuals with late-onset predominant distal myopathy; to describe the spectrum of phenotype resulting from the contributing role of two variants in genes located on two different chromosomes; and to highlight the underappreciated complex forms of genetic myopathies. PATIENTS AND METHODS: Clinical and laboratory data of three unrelated probands with predominantly distal weakness manifesting in the sixth-seventh decade of life, and available affected and unaffected family members were reviewed. Next-generation sequencing panel, whole exome sequencing, and targeted analyses of family members were performed to elucidate the genetic etiology of the myopathy. RESULTS: Genetic analyses detected two contributing variants located on different chromosomes in three unrelated probands: a heterozygous pathogenic mutation in SQSTM1 (c.1175C>T, p.Pro392Leu) and a heterozygous variant in TIA1 (c.1070A>G, p.Asn357Ser). The affected fraternal twin of one proband also carries both variants, while the unaffected family members harbor one or none. Two unrelated probands (family 1, II.3, and family 3, II.1) have a distal myopathy with rimmed vacuoles that manifested with index extensor weakness; the other proband (family 2, I.1) has myofibrillar myopathy manifesting with hypercapnic respiratory insufficiency and distal weakness. CONCLUSION: The findings indicate that all the affected individuals have a myopathy associated with both variants in SQSTM1 and TIA1, respectively, suggesting that the two variants determine the phenotype and likely functionally interact. We speculate that the TIA1 variant is a modifier of the SQSTM1 mutation. We identify the combination of SQSTM1 and TIA1 variants as a novel genetic defect associated with myofibrillar myopathy and suggest to consider sequencing both genes in the molecular investigation of myopathy with rimmed vacuoles and myofibrillar myopathy although additional studies are needed to investigate the digenic nature of the disease.

8.
Neuro Oncol ; 18(3): 350-60, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26245525

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a fatal cancer that has eluded major therapeutic advances. Failure to make progress may reflect the absence of a human GBM model that could be used to test compounds for anti-GBM activity. In this respect, the development of brain tumor-initiating cell (BTIC) cultures is a step forward because BTICs appear to capture the molecular diversity of GBM better than traditional glioma cell lines. Here, we perform a comparative genomic and genetic analysis of BTICs and their parent tumors as preliminary evaluation of the BTIC model. METHODS: We assessed single nucleotide polymorphisms (SNPs), genome-wide copy number variations (CNVs), gene expression patterns, and molecular subtypes of 11 established BTIC lines and matched parent tumors. RESULTS: Although CNV differences were noted, BTICs retained the major genomic alterations characteristic of GBM. SNP patterns were similar between BTICs and tumors. Importantly, recurring SNP or CNV alterations specific to BTICs were not seen. Comparative gene expression analysis and molecular subtyping revealed differences between BTICs and GBMs. These differences formed the basis of a 63-gene expression signature that distinguished cells from tumors; differentially expressed genes primarily involved metabolic processes. We also derived a set of 73 similarly expressed genes; these genes were not associated with specific biological functions. CONCLUSIONS: Although not identical, established BTIC lines preserve the core molecular alterations seen in their parent tumors, as well as the genomic hallmarks of GBM, without acquiring recurring BTIC-specific changes.


Subject(s)
Brain Neoplasms/genetics , DNA Copy Number Variations/genetics , Genome, Human , Glioblastoma/genetics , Neoplastic Stem Cells/pathology , Aged , Autoantibodies/therapeutic use , Brain Neoplasms/pathology , Cell Proliferation/drug effects , Female , Genetic Testing , Glioblastoma/pathology , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...