Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38464211

ABSTRACT

Introduction: Dibutyl phthalate (DBP), a phthalate congener, is widely utilized in consumer products and medication coatings. Women of reproductive age have a significant burden of DBP exposure through consumer products, occupational exposure, and medication. Prenatal DBP exposure is associated with adverse pregnancy/fetal outcomes and cardiovascular diseases in the offspring. However, the role of fetal sex and the general mechanisms underlying DBP exposure-associated adverse pregnancy outcomes are unclear. We hypothesize that prenatal DBP exposure at an environmentally relevant low dosage adversely affects fetal-placental development and function during pregnancy in a fetal sex-specific manner. Methods: Adult female CD-1 mice (8-10wks) were orally treated with vehicle (control) or with environmentally relevant low DBP dosages at 0.1 µg/kg/day (refer as DBP0.1) daily from 30 days before pregnancy through gestational day (GD) 18.5. Dam body mass composition was measured non-invasively using the echo-magnetic resonance imaging system. Lipid disposition in fetal labyrinth and maternal decidual area of placentas was examined using Oil Red O staining. Results: DBP0.1 exposure did not significantly affect the body weight and adiposity of non-pregnant adult female mice nor the maternal weight gain pattern and adiposity during pregnancy in adult female mice. DBP0.1 exposure does not affect fetal weight but significantly increased the placental weight at GD18.5 (indicative of decreased placental efficiency) in a fetal sex-specific manner. We further observed that DBP0.1 significantly decreased lipid disposition in fetal labyrinth of female, but not male placentas, while it did not affect lipid disposition in maternal decidual. Conclusions: Prenatal exposure to environmentally relevant low-dosage DBP adversely impacts the fetal-placental efficiency and lipid disposition in a fetal sex-specific manner.

2.
Bioelectricity ; 5(3): 181-187, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37746309

ABSTRACT

Background: Ischemic preconditioning induces lateralization and dephosphorylation of Connexin 43 (Cx43). However, the Cx43 protein that remains at intercalated disks may be phosphorylated by casein kinase 1 (CK1) and protein kinase C (PKC), and both kinases provide cardioprotection from further ischemic injury. Here we explore the channel characteristics of a Cx43 mutant mimicking preconditioning by CK1 and PKC phosphorylation. Materials and Methods: Whole-cell patch-clamp recordings were performed in cells expressing the mutant Cx43pc (S325,328,330,368D, S365A-Cx43), and the connexin electrical behavior was analyzed at the single channel and macroscopic level. Results: Cx43pc hemichannels opened readily, whereas gap junctions channels displayed amplitudes between the wild-type and CK1 phosphorylated forms, and weaker voltage gating than either counterpart. Conclusions: Ischemic preconditioning and the ensuing phosphorylation of Cx43 by PKC may render junctional channels insensitive to transjunctional voltages, allowing the preservation of intercellular communication in ischemic conditions.

3.
J Cell Sci ; 133(12)2020 06 18.
Article in English | MEDLINE | ID: mdl-32350069

ABSTRACT

Connexin 37 (Cx37; protein product of GJA4) expression profoundly suppresses proliferation of rat insulinoma (Rin) cells in a manner dependent on gap junction channel (GJCh) functionality and the presence and phosphorylation status of its C-terminus (CT). In Rin cells, growth is arrested upon induced Cx37 expression and serine 319 (S319) is frequently phosphorylated. Here, we show that preventing phosphorylation at this site (alanine substitution; S319A) relieved Cx37 of its growth-suppressive effect whereas mimicking phosphorylation at this site (aspartate substitution; S319D) enhanced the growth-suppressive properties of Cx37. Like wild-type Cx37 (Cx37-WT), Cx37-S319D GJChs and hemichannels (HChs) preferred the closed state, rarely opening fully, and gated slowly. In contrast, Cx37-S319A channels preferred open states, opened fully and gated rapidly. These data indicate that phosphorylation-dependent conformational differences in Cx37 protein and channel function underlie Cx37-induced growth arrest versus growth-permissive phenotypes. That the closed state of Cx37-WT and Cx37-S319D GJChs and HChs favors growth arrest suggests that rather than specific permeants mediating cell cycle arrest, the closed conformation instead supports interaction of Cx37 with growth regulatory proteins that result in growth arrest.


Subject(s)
Connexins , Serine , Animals , Cell Cycle , Cell Division , Connexins/genetics , Connexins/metabolism , Gap Junctions/metabolism , Phosphorylation , Rats , Serine/metabolism
4.
Cancers (Basel) ; 11(2)2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30736283

ABSTRACT

Differential phosphorylation of the carboxyl-terminus of connexin 37 (Cx37-CT) regulates phenotypic switching between cell growth phenotypes (cell death, cell cycle arrest, proliferation). The specific phosphorylation events in the Cx37-CT that are necessary for these growth regulatory effects are currently unknown. Through the combined use of deletion and site specific (de)phospho-mimetic Cx37-CT mutants, our data suggest a phosphorylation-dependent interaction between the mid-tail (aa 273⁻317) and end-tail (aa 318⁻333) portions of the Cx37-CT that regulates cell survival. As detected by mass spectrometry, Cx37 was phosphorylated at serines 275, 321, and 328; phosphomimetic mutations of these sites resulted in cell death when expressed in rat insulinoma cells. Alanine substitution at S328, but not at S275 or S321, also triggered cell death. Cx37-S275D uniquely induced the death of only low density, non-contact forming cells, but neither hemichannel open probability nor channel conductance distinguished death-inducing mutants. As channel function is necessary for cell death, together the data suggest that the phosphorylation state of the Cx37-CT controls an intra-domain interaction within the CT that modifies channel function and induces cell death.

5.
Int J Mol Sci ; 19(6)2018 Jun 04.
Article in English | MEDLINE | ID: mdl-29867029

ABSTRACT

Connexin 43 (Cx43), a gap junction protein seemingly fit to support cardiac impulse propagation and synchronic contraction, is phosphorylated in normoxia by casein kinase 1 (CK1). However, during cardiac ischemia or pressure overload hypertrophy, this phosphorylation fades, Cx43 abundance decreases at intercalated disks and increases at myocytes' lateral borders, and the risk of arrhythmia rises. Studies in wild-type and transgenic mice indicate that enhanced CK1-phosphorylation of Cx43 protects from arrhythmia, while dephosphorylation precedes arrhythmia vulnerability. The mechanistic bases of these Cx43 (de)phosphoform-linked cardiac phenotypes are unknown. We used patch-clamp and dye injection techniques to study the channel function (gating, permeability) of Cx43 mutants wherein CK1-targeted serines were replaced by aspartate (Cx43-CK1-D) or alanine (Cx43-CK1-A) to emulate phosphorylation and dephosphorylation, respectively. Cx43-CK1-D, but not Cx43-CK1-A, displayed high Voltage-sensitivity and variable permselectivity. Both mutants showed multiple channel open states with overall increased conductivity, resistance to acidification-induced junctional uncoupling, and hemichannel openings in normal external calcium. Modest differences in the mutant channels' function and regulation imply the involvement of dissimilar structural conformations of the interacting domains of Cx43 in electrical and chemical gating that may contribute to the divergent phenotypes of CK1-(de)phospho-mimicking Cx43 transgenic mice and that may bear significance in arrhythmogenesis.


Subject(s)
Connexin 43/metabolism , Protein Domains , Protein Processing, Post-Translational , Animals , Arrhythmias, Cardiac/metabolism , Casein Kinase I/metabolism , Cell Line, Tumor , Connexin 43/chemistry , Connexin 43/genetics , Connexin 43/physiology , Mutation , Phosphorylation , Rats
6.
J Cell Sci ; 130(19): 3308-3321, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28818996

ABSTRACT

Growth suppression mediated by connexin 37 (Cx37; also known as GJA4) requires interaction between its C-terminus and functional pore-forming domain. Using rat insulinoma cells, we show that Cx37 induces cell death and cell cycle arrest, and slowed cell cycling. Whether differential phosphorylation might regulate intramolecular interactions, and consequently the growth-suppressive phenotype, is unknown. Protein kinase C inhibition increased the open state probability of low-conductance gap junction channels (GJChs) and reduced GJCh closed state probability. Substituting alanine at serine residues 275, 302 and 328 eliminated Cx37-induced cell death, supported proliferation and reduced the GJCh closed state probability. With additional alanine for serine substitutions at residues 285, 319, 321 and 325, Cx37-induced cell death was eliminated and the growth arrest period prolonged, and GJCh closed state probability was restored. With aspartate substitution at these seven sites, apoptosis was induced and the open state probability of large conductance GJChs (and hemichannels) was increased. These data suggest that differential phosphorylation of the C-terminus regulates channel conformation and, thereby, cell cycle progression and cell survival.


Subject(s)
Cell Cycle/physiology , Connexins/metabolism , Gap Junctions/metabolism , Amino Acid Substitution , Animals , Cell Line, Tumor , Cell Survival/physiology , Connexins/genetics , Gap Junctions/genetics , Mutation, Missense , Phosphorylation , Rats
7.
Biomol NMR Assign ; 11(2): 137-141, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28251507

ABSTRACT

Connexin37 (Cx37) is a gap junction protein involved in cell-to-cell communication in the vasculature and other tissues. Cx37 suppresses proliferation of vascular cells involved in tissue development and repair in vivo, as well as tumor cells. Global deletion of Cx37 in mice leads to enhanced vasculogenesis in development, as well as collateralgenesis and angiogenesis in response to injury, which together support improved tissue remodeling and recovery following ischemic injury. Here we report the 1H, 15N, and 13C resonance assignments for an important regulatory domain of Cx37, the carboxyl terminus (CT; C233-V333). The predicted secondary structure of the Cx37CT domain based on the chemical shifts is that of an intrinsically disordered protein. In the 1H-15N HSQC, N-terminal residues S254-Y259 displayed a second weaker peak and residues E261-Y266 had significant line broadening. These residues are flanked by prolines (P250, P258, P260, and P268), suggesting proline cis-trans isomerization. Overall, these assignments will be useful for identifying the binding sites for intra- and inter-molecular interactions that affect Cx37 channel activity.


Subject(s)
Connexins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Animals , Mice , Protein Domains , Gap Junction alpha-4 Protein
8.
Biophys J ; 110(1): 127-40, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26745416

ABSTRACT

Separate connexin domains partake in proposed gating mechanisms of gap junction channels. The amino-terminus (NT) domains, which contribute to voltage sensing, may line the channel's cytoplasmic-facing funnel surface, stabilize the channel's overall structure through interactions with the transmembrane domains and each other, and integrate to form a compound particle to gate the channel closed. Interactions of the carboxyl-terminus (CT) and cytoplasmic loop (CL) domains underlie voltage- and low pH-triggered channel closure. To elucidate potential cooperation of these gating mechanisms, we replaced the Cx43NT with the Cx37NT (chimera Cx43(∗)NT37), leaving the remainder of the Cx43 sequence, including the CT and CL, unchanged. Compared to wild-type Cx43 (Cx43WT), Cx43(∗)NT37 junctions exhibited several functional alterations: extreme resistance to halothane- and acidification-induced uncoupling, absence of voltage-dependent fast inactivation, longer channel open times, larger unitary channel conductances, low junctional dye permeability/permselectivity, and an overall cation selectivity more typical of Cx37WT than Cx43WT junctions. Together, these results suggest a cohesive model of channel function wherein: 1) channel conductance and size selectivity are largely determined by pore diameter, whereas charge selectivity results from the NT domains, and 2) transition between fully open and (multiple) closed states involves global changes in structure of the pore-forming domains transduced by interactions of the pore-forming domains with either the NT, CT, or both, with the NT domains forming the gate of the completely closed channel.


Subject(s)
Connexin 43/chemistry , Connexin 43/metabolism , Ion Channel Gating , Amino Acid Sequence , Cell Line , Electrophysiological Phenomena/drug effects , Halothane/pharmacology , Hydrogen-Ion Concentration , Ion Channel Gating/drug effects , Molecular Sequence Data , Permeability/drug effects , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...