Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1641: 461959, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33611111

ABSTRACT

Fluorescent probes are used in drug nanocarrier pre-clinical studies or as active compounds in theranostics and photodynamic therapy. In the biological medium, nanoparticles interact with proteins, which can result in the off-target release of their cargo. The present study used asymmetric flow field-flow fractionation with online multi-angle laser light scattering and fluorescence detection (AF4-MALLS-FLD) to study the release, transfer, and partition of fluorescent dyes from polymeric nanoparticles (NP). NP formulations containing the dyes Rose Bengal, Rhodamine B, DiI, 3-(α-azidoacetyl)coumarin and its polymer conjugate, Nile Red, and IR780 and its polymer conjugate were prepared. NP suspensions were incubated in a medium with serum proteins and then analyzed by AF4. AF4 allowed efficient separation of proteins (< 10 nm) from fluorescently labeled NP (range of 54 - 180 nm in diameters). The AF4 analyses showed that some dyes, such as Rose Bengal, IR780, and Coumarin were transferred to a high extent (68-77%) from NP to proteins. By contrast, for DiI and dye-polymer conjugates, transfer occured to a lower extent. The studies of dye release kinetics showed that the transfer of IR780 from NP to proteins occurs at a high extent (~50%) and rate, while Nile Red was slowly released from the NP over time with reduced association with proteins (~20%). This experiment assesses the stability of fluorescence labeling of nanocarriers and probes the transfer of fluorescent dyes from NP to proteins, which is otherwise not accessible with commonly used techniques of separation, such as dialysis and ultrafiltration/centrifugation employed in drug encapsulation and release studies of nanocarriers. Determining the interaction and transfer of dyes to proteins is of utmost importance in the pre-clinical evaluation of drug nanocarriers for improved correlation between in vitro and in vivo studies.


Subject(s)
Blood Proteins/analysis , Drug Carriers/chemistry , Fluorescent Dyes/chemistry , Fractionation, Field Flow/methods , Nanoparticles/chemistry , Polymers/chemistry , Adsorption , Fluorescence , Humans , Hydrodynamics , Kinetics , Oxazines/chemistry , Quantum Theory , Rhodamines/chemistry , Scattering, Radiation
2.
Mater Sci Eng C Mater Biol Appl ; 94: 220-233, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30423704

ABSTRACT

For best photosensitizer activity phthalocyanine dyes used in photodynamic therapy should be molecularly dispersed. Polyethylene glycol-block-polylactide derivatives presenting benzyl side-groups were synthesized to encapsulate a highly lipophilic phthalocyanine dye (AlClPc) and evaluate the effect of π-π interactions on the nanocarrier colloidal stability and dye dispersion. Copolymers with 0, 1, 2 and 6 mol% of benzyl glycidyl ether (BGE) were obtained via polyethylene glycol initiated ring-opening copolymerization of D,l-lactide with BGE. The block copolymers formed stable, monodisperse nanospheres with low in vitro cytotoxicity. AlClPc loading increased the nanosphere size and affected their colloidal stability. The photo-physical properties of the encapsulated dye, studied in batch and after separation by field flow fractionation, demonstrated the superiority of plain PEG-PLA over BGE-containing copolymers in maintaining the dye in its monomeric (non-aggregated) form in aqueous suspension. High dye encapsulation and sustained dye release suggest that these nanocarriers are good candidates for photodynamic therapy.


Subject(s)
Drug Carriers/chemistry , Indoles/pharmacology , Nanospheres/chemistry , Photosensitizing Agents/pharmacology , Polyesters/chemistry , Polyethylene Glycols/chemistry , Animals , Cell Death/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , Indoles/chemistry , Isoindoles , Kinetics , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Molecular Weight , Octanols/chemistry , Particle Size , Photosensitizing Agents/chemistry , Polyesters/chemical synthesis , Polyethylene Glycols/chemical synthesis , Proton Magnetic Resonance Spectroscopy , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Static Electricity , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...