Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 32014 Oct 03.
Article in English | MEDLINE | ID: mdl-25279698

ABSTRACT

Bacterial chemotaxis systems are as diverse as the environments that bacteria inhabit, but how much environmental variation can cells tolerate with a single system? Diversification of a single chemotaxis system could serve as an alternative, or even evolutionary stepping-stone, to switching between multiple systems. We hypothesized that mutations in gene regulation could lead to heritable control of chemotactic diversity. By simulating foraging and colonization of E. coli using a single-cell chemotaxis model, we found that different environments selected for different behaviors. The resulting trade-offs show that populations facing diverse environments would ideally diversify behaviors when time for navigation is limited. We show that advantageous diversity can arise from changes in the distribution of protein levels among individuals, which could occur through mutations in gene regulation. We propose experiments to test our prediction that chemotactic diversity in a clonal population could be a selectable trait that enables adaptation to environmental variability.


Subject(s)
Adaptation, Physiological/genetics , Bacterial Proteins/genetics , Chemotaxis/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Models, Statistical , Bacterial Proteins/metabolism , Biological Evolution , Clone Cells , Escherichia coli/metabolism , Phenotype , Selection, Genetic , Single-Cell Analysis , Stochastic Processes
2.
PLoS Comput Biol ; 9(9): e1003230, 2013.
Article in English | MEDLINE | ID: mdl-24068908

ABSTRACT

In many sensory systems, transmembrane receptors are spatially organized in large clusters. Such arrangement may facilitate signal amplification and the integration of multiple stimuli. However, this organization likely also affects the kinetics of signaling since the cytoplasmic enzymes that modulate the activity of the receptors must localize to the cluster prior to receptor modification. Here we examine how these spatial considerations shape signaling dynamics at rest and in response to stimuli. As a model system, we use the chemotaxis pathway of Escherichia coli, a canonical system for the study of how organisms sense, respond, and adapt to environmental stimuli. In bacterial chemotaxis, adaptation is mediated by two enzymes that localize to the clustered receptors and modulate their activity through methylation-demethylation. Using a novel stochastic simulation, we show that distributive receptor methylation is necessary for successful adaptation to stimulus and also leads to large fluctuations in receptor activity in the steady state. These fluctuations arise from noise in the number of localized enzymes combined with saturated modification kinetics between the localized enzymes and the receptor substrate. An analytical model explains how saturated enzyme kinetics and large fluctuations can coexist with an adapted state robust to variation in the expression levels of the pathway constituents, a key requirement to ensure the functionality of individual cells within a population. This contrasts with the well-mixed covalent modification system studied by Goldbeter and Koshland in which mean activity becomes ultrasensitive to protein abundances when the enzymes operate at saturation. Large fluctuations in receptor activity have been quantified experimentally and may benefit the cell by enhancing its ability to explore empty environments and track shallow nutrient gradients. Here we clarify the mechanistic relationship of these large fluctuations to well-studied aspects of the chemotaxis system, precise adaptation and functional robustness.


Subject(s)
Adaptation, Physiological , Chemoreceptor Cells/physiology , Chemotaxis , Escherichia coli/physiology , Kinetics , Methylation , Models, Theoretical
3.
Development ; 140(3): 573-82, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23293289

ABSTRACT

The tailbud is the posterior leading edge of the growing vertebrate embryo and consists of motile progenitors of the axial skeleton, musculature and spinal cord. We measure the 3D cell flow field of the zebrafish tailbud and identify changes in tissue fluidity revealed by reductions in the coherence of cell motion without alteration of cell velocities. We find a directed posterior flow wherein the polarization between individual cell motion is high, reflecting ordered collective migration. At the posterior tip of the tailbud, this flow makes sharp bilateral turns facilitated by extensive cell mixing due to increased directional variability of individual cell motions. Inhibition of Wnt or Fgf signaling or cadherin 2 function reduces the coherence of the flow but has different consequences for trunk and tail extension. Modeling and additional data analyses suggest that the balance between the coherence and rate of cell flow determines whether body elongation is linear or whether congestion forms within the flow and the body axis becomes contorted.


Subject(s)
Body Patterning , Cell Movement , Gene Expression Regulation, Developmental , Zebrafish/embryology , Animals , Animals, Genetically Modified , Biomechanical Phenomena , Cadherins/genetics , Cadherins/metabolism , Cell Adhesion , Cell Count , Cell Polarity , Computer Simulation , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Embryonic Development , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Models, Biological , Tail/embryology , Tail/metabolism , Time Factors , Wnt Signaling Pathway , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
4.
Development ; 139(5): 940-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22278920

ABSTRACT

Using in vitro and in vivo assays, we define a network of Her/Hes dimers underlying transcriptional negative feedback within the zebrafish segmentation clock. Some of the dimers do not appear to be DNA-binding, whereas those dimers that do interact with DNA have distinct preferences for cis regulatory sequences. Dimerization is specific, with Hes6 serving as the hub of the network. Her1 binds DNA only as a homodimer but will also dimerize with Hes6. Her12 and Her15 bind DNA both as homodimers and as heterodimers with Hes6. Her7 dimerizes strongly with Hes6 and weakly with Her15. This network structure engenders specific network dynamics and imparts greater influence to the Her7 node. Computational analysis supports the hypothesis that Her7 disproportionately influences the availability of Hes6 to heterodimerize with other Her proteins. Genetic experiments suggest that this regulation is important for operation of the network. Her7 therefore has two functions within the zebrafish segmentation clock. Her7 acts directly within the delayed negative feedback as a DNA-binding heterodimer with Hes6. Her7 also has an emergent function, independent of DNA binding, in which it modulates network topology via sequestration of the network hub.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Body Patterning/physiology , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Repressor Proteins/metabolism , Transcription Factors/metabolism , Zebrafish Proteins/metabolism , Zebrafish , Animals , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Biological Clocks/physiology , Computer Simulation , DNA/chemistry , DNA/metabolism , Dimerization , Gene Knockdown Techniques , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , Zebrafish/anatomy & histology , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics
5.
Proc Natl Acad Sci U S A ; 109(3): 805-10, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22203971

ABSTRACT

Individual neuronal, signal transduction, and regulatory pathways often control multiple stochastic downstream actuators, which raises the question of how coordinated response to a single input can be achieved when individual actuators fluctuate independently. In Escherichia coli, the bacterial chemotaxis pathway controls the activity of multiple flagellar motors to generate the run-and-tumble motion of the cell. High-resolution microscopy experiments have identified the key conformational changes adopted by individual flagella during this process. By incorporating these observations into a stochastic model of the flagellar bundle, we demonstrate that the presence of multiple motors imposes a trade-off on chemotactic performance. Multiple motors reduce the latency of the response below the time scale of the stochastic switching of a single motor, which improves performance on steep gradients of attractants. However, the uncoordinated switching of multiple motors interrupts and shortens cell runs, which thereby reduces signal detection and performance on shallow gradients. Remarkably, when slow fluctuations generated by the adaptation mechanism of the chemotaxis system are incorporated in the model at levels measured in experiments, the chemotactic sensitivity and performance in shallow gradients is partially restored with marginal effects for steep gradients. The noise is beneficial because it simultaneously generates long events in the statistics of individual motors and coordinates the motors to generate a long tail in the run length distribution of the cell. Occasional long runs are known to enhance exploration of random walkers. Here we show that they have the additional benefit of enhancing the sensitivity of the bacterium to very shallow gradients.


Subject(s)
Chemotaxis , Escherichia coli/cytology , Signal Transduction , Flagella/metabolism , Models, Biological , Molecular Conformation , Molecular Motor Proteins/metabolism , Stochastic Processes
6.
Nature ; 468(7325): 819-23, 2010 Dec 09.
Article in English | MEDLINE | ID: mdl-21076396

ABSTRACT

The chemotaxis signalling network in Escherichia coli that controls the locomotion of bacteria is a classic model system for signal transduction. This pathway modulates the behaviour of flagellar motors to propel bacteria towards sources of chemical attractants. Although this system relaxes to a steady state in response to environmental changes, the signalling events within the chemotaxis network are noisy and cause large temporal variations of the motor behaviour even in the absence of stimulus. That the same signalling network governs both behavioural variability and cellular response raises the question of whether these two traits are independent. Here, we experimentally establish a fluctuation-response relationship in the chemotaxis system of living bacteria. Using this relationship, we demonstrate the possibility of inferring the cellular response from the behavioural variability measured before stimulus. In monitoring the pre- and post-stimulus switching behaviour of individual bacterial motors, we found that variability scales linearly with the response time for different functioning states of the cell. This study highlights that the fundamental relationship between fluctuation and response is not constrained to physical systems at thermodynamic equilibrium but is extensible to living cells. Such a relationship not only implies that behavioural variability and cellular response can be coupled traits, but it also provides a general framework within which we can examine how the selection of a network design shapes this interdependence.


Subject(s)
Chemotaxis/physiology , Environment , Escherichia coli/cytology , Escherichia coli/physiology , Signal Transduction , Aspartic Acid/metabolism , Aspartic Acid/pharmacology , Calibration , Chemotaxis/drug effects , Chromatography, High Pressure Liquid , Escherichia coli/drug effects , Flagella/drug effects , Flagella/physiology , Molecular Motor Proteins/metabolism , Rotation , Signal Transduction/drug effects , Stochastic Processes , Time Factors
7.
J Phys Chem B ; 110(6): 2462-6, 2006 Feb 16.
Article in English | MEDLINE | ID: mdl-16471840

ABSTRACT

The conductance of molecular junctions, formed by breaking gold point contacts dressed with various thiol functionalized organic molecules, is measured at 293 K and at 30 K. In the presence of molecules, individual conductance traces measured as a function of increasing gold electrode displacement show clear steps below the quantum conductance steps of the gold contact. These steps are distributed over a wide range of molecule-dependent conductance values. Histograms constructed from all conductance traces therefore do not show clear peaks either at room or low temperatures. Filtering of the data sets by an objective automated procedure only marginally improves the visibility of such features. We conclude that the geometrical junction to junction variations dominate the conductance measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...