Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Epigenetics Chromatin ; 17(1): 7, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509556

ABSTRACT

BACKGROUND: Fusarium fujikuroi is a pathogen of rice causing diverse disease symptoms such as 'bakanae' or stunting, most likely due to the production of various natural products (NPs) during infection. Fusaria have the genetic potential to synthesize a plethora of these compounds with often diverse bioactivity. The capability to synthesize NPs exceeds the number of those being produced by far, implying a gene regulatory network decisive to induce production. One such regulatory layer is the chromatin structure and chromatin-based modifications associated with it. One prominent example is the exchange of histones against histone variants such as the H2A variant H2A.Z. Though H2A.Z already is well studied in several model organisms, its regulatory functions are not well understood. Here, we used F. fujikuroi as a model to explore the role of the prominent histone variant FfH2A.Z in gene expression within euchromatin and facultative heterochromatin. RESULTS: Through the combination of diverse '-omics' methods, we show the global distribution of FfH2A.Z and analyze putative crosstalks between the histone variant and two prominent histone marks, i.e., H3K4me3 and H3K27me3, important for active gene transcription and silencing, respectively. We demonstrate that, if FfH2A.Z is positioned at the + 1-nucleosome, it poises chromatin for gene transcription, also within facultative heterochromatin. Lastly, functional characterization of FfH2A.Z overexpression and depletion mutants revealed that FfH2A.Z is important for wild type-like fungal development and secondary metabolism. CONCLUSION: In this study, we show that the histone variant FfH2A.Z is a mark of positive gene transcription and acts independently of the chromatin state most likely through the stabilization of the + 1-nucleosome. Furthermore, we demonstrate that FfH2A.Z depletion does not influence the establishment of both H3K27me3 and H3K4me3, thus indicating no crosstalk between FfH2A.Z and both histone marks. These results highlight the manifold functions of the histone variant FfH2A.Z in the phytopathogen F. fujikuroi, which are distinct regarding gene transcription and crosstalk with the two prominent histone marks H3K27me3 and H3K4me3, as proposed for other model organisms.


Subject(s)
Fusarium , Histones , Nucleosomes , Histones/metabolism , Heterochromatin , Chromatin , Gene Silencing
2.
Toxins (Basel) ; 15(9)2023 09 20.
Article in English | MEDLINE | ID: mdl-37756008

ABSTRACT

The aim of this systematic review is to provide an update on the occurrence and co-occurrence of selected non-regulated mycotoxins and provide an overview of current regulations. Fifteen non-regulated mycotoxins were found in 19 food categories worldwide. On top of that, 38 different combinations of non-regulated mycotoxins were found, with mixtures varying from binary combinations up to 12 mycotoxins. Taking into consideration the amount of evidence regarding the prevalence and co-occurrence of non-regulated mycotoxins, future steps should be taken considering continuous monitoring, scientific exchange, and generation of high-quality data. To enhance data quality, guidelines outlining the minimum quality criteria for both occurrence data and metadata are needed. By doing so, we can effectively address concerns related to the toxicity of non-regulated mycotoxins. Furthermore, obtaining more data concerning the co-occurrence of both regulated and non-regulated mycotoxins could aid in supporting multiple chemical risk assessment methodologies. Implementing these steps could bolster food safety measures, promote evidence-based regulations, and ultimately safeguard public health from the potential adverse effects of non-regulated mycotoxins.


Subject(s)
Data Accuracy , Mycotoxins , Fenbendazole , Food , Food Safety
3.
J Agric Food Chem ; 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36780464

ABSTRACT

Fusarium graminearum is the causal agent of Gibberella ear rot (GER) in maize, a devastating fungal disease resulting in yield reduction and contamination of grains with type B trichothecene (TCTB) mycotoxins. Reducing GER damage requires the implementation of an integrated management strategy in which the use of resistant maize genotypes is a key factor. The present study aimed at providing new phenotyping tools to improve breeding pipelines by investigating the yet understudied contribution of carotenoids to GER resistance. Here, we demonstrated for the first time the efficiency of carotenoid extracts from various maize genotypes to inhibit the production of TCTB by F. graminearum. We further suggested that zeaxanthin could be a key actor of this inhibition efficiency, notably via a negative transcriptional control of several biosynthetic genes of the TCTB pathway. Besides, we demonstrated that zeaxanthin treatments led to profound perturbations in the fungal redox homeostasis by affecting the expression of key genes encoding ROS detoxifying enzymes, several of them being involved in F. graminearum virulence during plant infection. Altogether, our data support the contribution of carotenoids to the mechanisms employed by maize to counteract F. graminearum infection and its production of TCTB.

4.
Food Chem ; 407: 135134, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36527946

ABSTRACT

Pseudocereals are best known for three crops derived from the Andes: quinoa (Chenopodium quinoa), canihua (C. pallidicaule), and kiwicha (Amaranthus caudatus). Their grains are recognized for their nutritional benefits; however, there is a higher level of polyphenism. Meanwhile, the chemical food safety of pseudocereals remains poorly documented. Here, we applied untargeted and targeted metabolomics approaches by LC-MS to achieve both: i) a comprehensive chemical mapping of pseudocereal samples collected in the Andes; and ii) a quantification of their contents in emerging mycotoxins. An inventory of the fungal community was also realized to better know the fungi present in these grains. Metabotyping permitted to add new insights into the chemotaxonomy of pseudocereals, confirming the previously established phylotranscriptomic clades. Sixteen samples from Peru (out of 27) and one from France (out of one) were contaminated with Beauvericin, an emerging mycotoxin. Several mycotoxigenic fungi were detected, including Aspergillus sp., Penicillium sp., and Alternaria sp.


Subject(s)
Chenopodium quinoa , Mycotoxins , Mycotoxins/analysis , Edible Grain/chemistry , Crops, Agricultural/chemistry , Chenopodium quinoa/chemistry , Alternaria , Food Contamination/analysis
5.
Fungal Divers ; 116(1): 547-614, 2022.
Article in English | MEDLINE | ID: mdl-36123995

ABSTRACT

Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.

6.
Toxins (Basel) ; 14(5)2022 04 29.
Article in English | MEDLINE | ID: mdl-35622565

ABSTRACT

Chromatin structure is a major regulator of DNA-associated processes, such as transcription, DNA repair, and replication. Histone post-translational modifications, or PTMs, play a key role on chromatin dynamics. PTMs are involved in a wide range of biological processes in eukaryotes, including fungal species. Their deposition/removal and their underlying functions have been extensively investigated in yeasts but much less in other fungi. Nonetheless, the major role of histone PTMs in regulating primary and secondary metabolisms of filamentous fungi, including human and plant pathogens, has been pinpointed. In this review, an overview of major identified PTMs and their respective functions in fungi is provided, with a focus on filamentous fungi when knowledge is available. To date, most of these studies investigated histone acetylations and methylations, but the development of new methodologies and technologies increasingly allows the wider exploration of other PTMs, such as phosphorylation, ubiquitylation, sumoylation, and acylation. Considering the increasing number of known PTMs and the full range of their possible interactions, investigations of the subsequent Histone Code, i.e., the biological consequence of the combinatorial language of all histone PTMs, from a functional point of view, are exponentially complex. Better knowledge about histone PTMs would make it possible to efficiently fight plant or human contamination, avoid the production of toxic secondary metabolites, or optimize the industrial biosynthesis of certain beneficial compounds.


Subject(s)
Histones , Protein Processing, Post-Translational , Chromatin , DNA/metabolism , Histones/metabolism , Humans , Secondary Metabolism
7.
Fungal Genet Biol ; 153: 103566, 2021 08.
Article in English | MEDLINE | ID: mdl-33991664

ABSTRACT

Fusarium graminearum is one of the most frequent causal agents of the Fusarium Head Blight, a cereal disease spread throughout the world, reducing grain production and quality. F. graminearum isolates are genetically and phenotypically highly diverse. Notably, remarkable variations of aggressiveness between isolates have been observed, which could reflect an adaptive potential of this pathogen. In this study, we aimed to characterize the genetic basis of aggressiveness variation observed in an F1 population (n = 94), for which genome sequences of both parental strains are available. Aggressiveness was assessed by a panel of in planta and in vitro proxies during two phenotyping trials including, among others, disease severity and mycotoxin accumulation in wheat spike. One major and single QTL was mapped for all the traits measured, on chromosome I, that explained up to 90% of the variance for disease severity. The confidence interval at the QTL spanned 1.2 Mb and contained 428 genes on the reference genome. Of these, four candidates were selected based on the postulate that a non-synonymous mutation affecting protein function may be responsible for phenotypic differences. Finally, a new mutation was identified and functionally validated in the gene FgVe1, coding for a velvet protein known to be involved in pathogenicity and secondary metabolism production in several fungi.


Subject(s)
Fungal Proteins/genetics , Fusarium/genetics , Fusarium/pathogenicity , Plant Diseases/microbiology , Triticum/microbiology , Alleles , Chromosome Mapping , Chromosomes, Fungal , Genes, Fungal , Mutation , Phenotype , Quantitative Trait Loci , Secondary Metabolism/genetics
8.
Sci Rep ; 11(1): 7962, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846413

ABSTRACT

Fusarium graminearum is a major fungal pathogen affecting crops of worldwide importance. F. graminearum produces type B trichothecene mycotoxins (TCTB), which are not fully eliminated during food and feed processing. Therefore, the best way to minimize TCTB contamination is to develop prevention strategies. Herein we show that treatment with the reduced form of the γ-core of the tick defensin DefMT3, referred to as TickCore3 (TC3), decreases F. graminearum growth and abrogates TCTB production. The oxidized form of TC3 loses antifungal activity, but retains anti-mycotoxin activity. Molecular dynamics show that TC3 is recruited by specific membrane phospholipids in F. graminearum and that membrane binding of the oxidized form of TC3 is unstable. Capping each of the three cysteine residues of TC3 with methyl groups reduces its inhibitory efficacy. Substitutions of the positively-charged residues lysine (Lys) 6 or arginine 7 by threonine had the highest and the lesser impact, respectively, on the anti-mycotoxin activity of TC3. We conclude that the binding of linear TC3 to F. graminearum membrane phospholipids is required for the antifungal activity of the reduced peptide. Besides, Lys6 appears essential for the anti-mycotoxin activity of the reduced peptide. Our results provide foundation for developing novel and environment-friendly strategies for controlling F. graminearum.


Subject(s)
Defensins/pharmacology , Fusarium/growth & development , Mycotoxins/biosynthesis , Ticks/metabolism , Amino Acid Sequence , Animals , Antifungal Agents/pharmacology , Cysteine/metabolism , Membrane Lipids/metabolism , Methylation , Peptides/chemistry , Phospholipids/metabolism , Protein Binding
9.
Toxins (Basel) ; 13(2)2021 02 23.
Article in English | MEDLINE | ID: mdl-33672426

ABSTRACT

Consumption of cereals contaminated by mycotoxins poses health risks. For instance, Fumonisins B, mainly produced by Fusarium verticillioides and Fusariumproliferatum, and the type B trichothecene deoxynivalenol, typically produced by Fusarium graminearum, are highly prevalent on cereal grains that are staples of many cultural diets and known to represent a toxic risk hazard. In Peru, corn and other cereals are frequently consumed on a daily basis under various forms, the majority of food grains being sold through traditional markets for direct consumption. Here, we surveyed mycotoxin contents of market-bought grain samples in order to assess the threat these mycotoxins might represent to Peruvian population, with a focus on corn. We found that nearly one sample of Peruvian corn out of six was contaminated with very high levels of Fumonisins, levels mostly ascribed to the presence of F. verticillioides. Extensive profiling of Peruvian corn kernels for fungal contaminants could provide elements to refine the potential risk associated with Fusarium toxins and help define adapted food safety standards.


Subject(s)
Dietary Exposure/adverse effects , Edible Grain/microbiology , Food Microbiology , Fusarium/metabolism , Mycotoxins/adverse effects , Mycotoxins/analysis , Zea mays/microbiology , Commerce , Consumer Product Safety , Food Supply , Humans , Peru , Risk Assessment
10.
PLoS Genet ; 16(10): e1009125, 2020 10.
Article in English | MEDLINE | ID: mdl-33091009

ABSTRACT

Fusarium head blight is a destructive disease of grains resulting in reduced yields and contamination of grains with mycotoxins worldwide; Fusarium graminearum is its major causal agent. Chromatin structure changes play key roles in regulating mycotoxin biosynthesis in filamentous fungi. Using a split-marker approach in three F. graminearum strains INRA156, INRA349 and INRA812 (PH-1), we knocked out the gene encoding H2A.Z, a ubiquitous histone variant reported to be involved in a diverse range of biological processes in yeast, plants and animals, but rarely studied in filamentous fungi. All ΔH2A.Z mutants exhibit defects in development including radial growth, sporulation, germination and sexual reproduction, but with varying degrees of severity between them. Heterogeneity of osmotic and oxidative stress response as well as mycotoxin production was observed in ΔH2A.Z strains. Adding-back wild-type H2A.Z in INRA349ΔH2A.Z could not rescue the phenotypes. Whole genome sequencing revealed that, although H2A.Z has been removed from the genome and the deletion cassette is inserted at H2A.Z locus only, mutations occur at other loci in each mutant regardless of the genetic background. Genes affected by these mutations encode proteins involved in chromatin remodeling, such as the helicase Swr1p or an essential subunit of the histone deacetylase Rpd3S, and one protein of unknown function. These observations suggest that H2A.Z and the genes affected by such mutations are part or the same genetic interaction network. Our results underline the genetic plasticity of F. graminearum facing detrimental gene perturbation. These findings suggest that intergenic suppressions rescue deleterious phenotypes in ΔH2A.Z strains, and that H2A.Z may be essential in F. graminearum. This assumption is further supported by the fact that H2A.Z deletion failed in another Fusarium spp., i.e., the rice pathogen Fusarium fujikuroi.


Subject(s)
Fusarium/genetics , Histones/genetics , Oxidative Stress/genetics , Plant Diseases/genetics , Adenosine Triphosphatases/genetics , Disease Resistance/genetics , Fusarium/pathogenicity , Gene Expression Regulation, Fungal , Gene Knockout Techniques , Genetic Heterogeneity , Genome, Fungal/genetics , Germination/genetics , Histone Deacetylases/genetics , Mutation/genetics , Osmotic Pressure , Plant Diseases/microbiology , Spores, Fungal/genetics , Spores, Fungal/growth & development , Triticum/genetics , Triticum/microbiology , Virulence/genetics , Whole Genome Sequencing
11.
Crit Rev Microbiol ; 46(3): 321-337, 2020 May.
Article in English | MEDLINE | ID: mdl-32594818

ABSTRACT

Chromatin is a highly dynamic structure that closely relates with gene expression in eukaryotes. ATP-dependent chromatin remodelling, histone post-translational modification and DNA methylation are the main ways that mediate such plasticity. The histone variant H2A.Z is frequently encountered in eukaryotes, and can be deposited or removed from nucleosomes by chromatin remodelling complex SWR1 or INO80, respectively, leading to altered chromatin state. H2A.Z has been found to be involved in a diverse range of biological processes, including genome stability, DNA repair and transcriptional regulation. Due to their formidable production of secondary metabolites, filamentous fungi play outstanding roles in pharmaceutical production, food safety and agriculture. During the last few years, chromatin structural changes were proven to be a key factor associated with secondary metabolism in fungi. However, studies on the function of H2A.Z are scarce. Here, we summarize current knowledge of H2A.Z functions with a focus on filamentous fungi. We propose that H2A.Z is a potential target involved in the regulation of secondary metabolite biosynthesis by fungi.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/physiology , Fungal Proteins/physiology , Fungi/physiology , Histones/physiology , DNA Repair , Gene Expression Regulation, Fungal , Nucleosomes/physiology , Transcription, Genetic
12.
BMC Genomics ; 21(1): 358, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32397981

ABSTRACT

BACKGROUND: Increased contamination of European and Asian wheat and barley crops with "emerging" mycotoxins such as enniatins or beauvericin, produced by Fusarium avenaceum and Fusarium tricinctum, suggest that these phylogenetically close species could be involved in future food-safety crises. RESULTS: The mitochondrial genomes of F. tricinctum strain INRA104 and F. avenaceum strain FaLH27 have been annotated. A comparative analysis was carried out then extended to a set of 25 wild strains. Results show that they constitute two distinct species, easily distinguished by their mitochondrial sequences. The mitochondrial genetic variability is mainly located within the intergenic regions. Marks of variations show they have evolved (i) by Single Nucleotide Polymorphisms (SNPs), (ii) by length variations mediated by insertion/deletion sequences (Indels), and (iii) by length mutations generated by DNA sliding events occurring in mononucleotide (A)n or (T)n microsatellite type sequences arranged in a peculiar palindromic organization. The optionality of these palindromes between both species argues for their mobility. The presence of Indels and SNPs in palindrome neighbouring regions suggests their involvement in these observed variations. Moreover, the intraspecific and interspecific variations in the presence/absence of group I introns suggest a high mobility, resulting from several events of gain and loss during short evolution periods. Phylogenetic analyses of intron orthologous sequences suggest that most introns could have originated from lateral transfers from phylogenetically close or distant species belonging to various Ascomycota genera and even to the Basidiomycota fungal division. CONCLUSIONS: Mitochondrial genome evolution between F. tricinctum and F. avenaceum is mostly driven by two types of mobile genetic elements, implicated in genome polymorphism. The first one is represented by group I introns. Indeed, both genomes harbour optional (inter- or intra-specifically) group I introns, all carrying putatively functional hegs, arguing for a high mobility of these introns during short evolution periods. The gain events were shown to involve, for most of them, lateral transfers between phylogenetically distant species. This study has also revealed a new type of mobile genetic element constituted by a palindromic arrangement of (A) n and (T) n microsatellite sequences whose presence was related to occurrence of SNPs and Indels in the neighbouring regions.


Subject(s)
Evolution, Molecular , Fusarium/genetics , Genome, Mitochondrial , Microsatellite Repeats/genetics , Bayes Theorem , Comparative Genomic Hybridization , Fungal Proteins/genetics , Fusarium/classification , Introns , Phylogeny , Polymorphism, Single Nucleotide
13.
Genome Announc ; 6(25)2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29930037

ABSTRACT

The genome of the phytopathogenic fungus Fusarium tricinctum strain INRA104 was sequenced at a fold-coverage of more than 500×. This led to 23 scaffolds, including one scaffold for the mitochondrial genome, for a total genome size of 42.8 Mb, with an average GC content of 45% and 13,387 predicted genes.

14.
Appl Environ Microbiol ; 84(8)2018 04 15.
Article in English | MEDLINE | ID: mdl-29427428

ABSTRACT

Fusarium graminearum is a major plant pathogen that causes devastating diseases of cereals and produces type B trichothecene (TCTB) mycotoxins in infected grains. A comprehensive understanding of the molecular and biochemical mechanisms underlying the regulation of TCTB biosynthesis is required for improving strategies to control the TCTB contamination of crops and ensuring that these strategies do not favor the production of other toxic metabolites by F. graminearum Elucidation of the association of TCTB biosynthesis with other central and specialized processes was the focus of this study. Combined 1H nuclear magnetic resonance (1H NMR) and liquid chromatography-quadrupole time of flight-mass spectrometry (LC-QTOF-MS) analyses were used to compare the exo- and endometabolomes of F. graminearum grown under toxin-inducing and -repressing caffeic acid conditions. Ninety-five metabolites were putatively or unambiguously identified, including 26 primary and 69 specialized metabolites. Our data demonstrated that the inhibition of TCTB production induced by caffeic acid exposure was associated with significant changes in the secondary and primary metabolism of F. graminearum, although the fungal growth was not affected. The main metabolic changes were an increase in the accumulation of several polyketides, including toxic ones, alterations in the tricarboxylic organic acid cycle, and modifications in the metabolism of several amino acids and sugars. While these findings provide insights into the mechanisms that govern the inhibition of TCTB production by caffeic acid, they also demonstrate the interdependence between the biosynthetic pathway of TCTB and several primary and specialized metabolic pathways. These results provide further evidence of the multifaceted role of TCTB in the life cycle of F. graminearumIMPORTANCEFusarium graminearum is a major plant pathogen that causes devastating diseases of cereal crops and produces type B trichothecene (TCTB) mycotoxins in infected grains. The best way to restrict consumer exposure to TCTB is to limit their production before harvest, which requires increasing the knowledge on the mechanisms that regulate their biosynthesis. Using a metabolomics approach, we investigated the interconnection between the TCTB production pathway and several fungal metabolic pathways. We demonstrated that alteration in the TCTB biosynthetic pathway can have a significant impact on other metabolic pathways, including the biosynthesis of toxic polyketides, and vice versa. These findings open new avenues for identifying fungal targets for the design of molecules with antimycotoxin properties and therefore improving sustainable strategies to fight against diseases caused by F. graminearum Our data further demonstrate that analyses should consider all fungal toxic metabolites rather than the targeted family of mycotoxins when assessing the efficacy of control strategies.


Subject(s)
Caffeic Acids/metabolism , Fusarium/metabolism , Mycotoxins/metabolism , Biosynthetic Pathways , Caffeic Acids/administration & dosage , Metabolomics , Mycotoxins/biosynthesis
15.
BMC Genomics ; 18(1): 203, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28231761

ABSTRACT

BACKGROUND: Fusarium graminearum is one of the main causal agents of the Fusarium Head Blight, a worldwide disease affecting cereal cultures, whose presence can lead to contaminated grains with chemically stable and harmful mycotoxins. Resistant cultivars and fungicides are frequently used to control this pathogen, and several observations suggest an adaptation of F. graminearum that raises concerns regarding the future of current plant disease management strategies. To understand the genetic basis as well as the extent of its adaptive potential, we investigated the landscape of genomic diversity among six French isolates of F. graminearum, at single-nucleotide resolution using whole-genome re-sequencing. RESULTS: A total of 242,756 high-confidence genetic variants were detected when compared to the reference genome, among which 96% are single nucleotides polymorphisms. One third of these variants were observed in all isolates. Seventy-seven percent of the total polymorphism is located in 32% of the total length of the genome, comprising telomeric/subtelomeric regions as well as discrete interstitial sections, delineating clear variant enriched genomic regions- 7.5 times in average. About 80% of all the F. graminearum protein-coding genes were found polymorphic. Biological functions are not equally affected: genes potentially involved in host adaptation are preferentially located within polymorphic islands and show greater diversification rate than genes fulfilling basal functions. We further identified 29 putative effector genes enriched with non-synonymous effect mutation. CONCLUSIONS: Our results highlight a remarkable level of polymorphism in the genome of F. graminearum distributed in a specific pattern. Indeed, the landscape of genomic diversity follows a bi-partite organization of the genome according to polymorphism and biological functions. We measured, for the first time, the level of sequence diversity for the entire gene repertoire of F. graminearum and revealed that the majority are polymorphic. Those assumed to play a role in host-pathogen interaction are discussed, in the light of the subsequent consequences for host adaptation. The annotated genetic variants discovered for this major pathogen are valuable resources for further genetic and genomic studies.


Subject(s)
Fusarium/genetics , Genetic Variation , Genome, Fungal , Genomics , Host-Pathogen Interactions , Cluster Analysis , Computational Biology/methods , Fusarium/classification , Gene Ontology , Genomics/methods , INDEL Mutation , Molecular Sequence Annotation , Phenotype , Polymorphism, Single Nucleotide
16.
J Proteome Res ; 15(8): 2787-801, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27291344

ABSTRACT

A major obstacle in understanding the complex biology of the malaria parasite remains to discover how gene transcription is controlled during its life cycle. Accumulating evidence indicates that the parasite's epigenetic state plays a fundamental role in gene expression and virulence. Using a comprehensive and quantitative mass spectrometry approach, we determined the global and dynamic abundance of histones and their covalent post-transcriptional modifications throughout the intraerythrocytic developmental cycle of Plasmodium falciparum. We detected a total of 232 distinct modifications, of which 160 had never been detected in Plasmodium and 88 had never been identified in any other species. We further validated over 10% of the detected modifications and their expression patterns by multiple reaction monitoring assays. In addition, we uncovered an unusual chromatin organization with parasite-specific histone modifications and combinatorial dynamics that may be directly related to transcriptional activity, DNA replication, and cell cycle progression. Overall, our data suggest that the malaria parasite has a unique histone modification signature that correlates with parasite virulence.


Subject(s)
Histone Code , Life Cycle Stages/genetics , Malaria/parasitology , Plasmodium falciparum/pathogenicity , Epigenesis, Genetic , Erythrocytes/parasitology , Histones/metabolism , Plasmodium falciparum/genetics , Protozoan Proteins/adverse effects , Protozoan Proteins/analysis , Transcription, Genetic , Transcriptional Activation
17.
18.
Crit Rev Microbiol ; 41(3): 295-308, 2015.
Article in English | MEDLINE | ID: mdl-24041414

ABSTRACT

To survive sudden and potentially lethal changes in their environment, filamentous fungi must sense and respond to a vast array of stresses, including oxidative stresses. The generation of reactive oxygen species, or ROS, is an inevitable aspect of existence under aerobic conditions. In addition, in the case of fungi with pathogenic lifestyles, ROS are produced by the infected hosts and serve as defense weapons via direct toxicity, as well as effectors in fungal cell death mechanisms. Filamentous fungi have thus developed complex and sophisticated responses to evade oxidative killing. Several steps are determinant in these responses, including the activation of transcriptional regulators involved in the control of the antioxidant machinery. Gathering and integrating the most recent advances in knowledge of oxidative stress responses in fungi are the main objectives of this review. Most of the knowledge coming from two models, the yeast Saccharomyces cerevisiae and fungi of the genus Aspergillus, is summarized. Nonetheless, recent information on various other fungi is delivered when available. Finally, special attention is given on the potential link between the functional interaction between oxidative stress and secondary metabolism that has been suggested in recent reports, including the production of mycotoxins.


Subject(s)
Aspergillus/metabolism , Fungi/metabolism , Oxidative Stress/genetics , Saccharomyces cerevisiae/metabolism , Secondary Metabolism/genetics , Antioxidants/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Reactive Oxygen Species/metabolism , Transcription, Genetic/genetics , Transcriptional Activation/genetics
19.
BMC Genomics ; 15: 848, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25281558

ABSTRACT

BACKGROUND: Homopolymeric tracts, particularly poly dA.dT, are enriched within the intergenic sequences of eukaryotic genomes where they appear to act as intrinsic regulators of nucleosome positioning. A previous study of the incomplete genome of the human malarial parasite Plasmodium falciparum reports a higher than expected enrichment of poly dA.dT tracts, far above that anticipated even in this highly AT rich genome. Here we report an analysis of the relative frequency, length and spatial arrangement of homopolymer tracts for the complete P. falciparum genome, extending this analysis to twelve additional genomes of Apicomplexan parasites important to human and animal health. In addition, using nucleosome-positioning data available for P. falciparum, we explore the correlation of poly dA.dT tracts with nucleosome-positioning data over key expression landmarks within intergenic regions. RESULTS: We describe three apparent lineage-specific patterns of homopolymeric tract organization within the intergenic regions of these Apicomplexan parasites. Moreover, a striking pattern of enrichment of overly long poly dA.dT tracts in the intergenic regions of Plasmodium spp. uniquely extends into protein coding sequences. There is a conserved spatial arrangement of poly dA.dT immediately flanking open reading frames and over predicted core promoter sites. These key landmarks are all relatively depleted in nucleosomes in P. falciparum, as would be expected for poly dA.dT acting as nucleosome exclusion sequences. CONCLUSIONS: Previous comparative studies of homopolymer tract organization emphasize evolutionary diversity; this is the first report of such an analysis within a single phylum. Our data provide insights into the evolution of homopolymeric tracts and the selective pressures at play in their maintenance and expansion.


Subject(s)
Malaria/parasitology , Plasmodium falciparum/genetics , DNA, Intergenic/genetics , DNA, Intergenic/metabolism , Gene Expression , Genome, Protozoan , Humans , Malaria/pathology , Nucleosomes/metabolism , Open Reading Frames/genetics , Plasmodium falciparum/metabolism , Poly dA-dT/chemistry , Poly dA-dT/metabolism , Untranslated Regions/genetics
20.
Mol Plant Microbe Interact ; 27(10): 1148-58, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25014591

ABSTRACT

Fusarium verticillioides infects maize ears, causing ear rot disease and contamination of grain with fumonisin mycotoxins. This contamination can be reduced by the presence of bioactive compounds in kernels that are able to inhibit fumonisin biosynthesis. To identify such compounds, we used kernels from a maize genotype with moderate susceptibility to F. verticillioides, harvested at the milk-dough stage (i.e., when fumonisin production initiates in planta), and applied a bioguided fractionation approach. Chlorogenic acid was the most abundant compound in the purified active fraction and its contribution to fumonisin inhibitory activity was up to 70%. Moreover, using a set of maize genotypes with different levels of susceptibility, chlorogenic acid was shown to be significantly higher in immature kernels of the moderately susceptible group. Altogether, our data indicate that chlorogenic acid may considerably contribute to either maize resistance to Fusarium ear rot, fumonisin accumulation, or both. We further investigated the mechanisms involved in the inhibition of fumonisin production by chlorogenic acid and one of its hydrolyzed products, caffeic acid, by following their metabolic fate in supplemented F. verticillioides broths. Our data indicate that F. verticillioides was able to biotransform these phenolic compounds and that the resulting products can contribute to their inhibitory activity.


Subject(s)
Chlorogenic Acid/isolation & purification , Fumonisins/metabolism , Fusarium/chemistry , Plant Diseases/microbiology , Plant Extracts/isolation & purification , Zea mays/chemistry , Biosynthetic Pathways , Biotransformation , Caffeic Acids/chemistry , Caffeic Acids/isolation & purification , Caffeic Acids/metabolism , Chemical Fractionation , Chlorogenic Acid/chemistry , Chlorogenic Acid/metabolism , Disease Resistance , Fumonisins/analysis , Fusarium/metabolism , Genotype , Plant Diseases/immunology , Plant Extracts/chemistry , Seeds/chemistry , Seeds/immunology , Seeds/metabolism , Seeds/microbiology , Species Specificity , Zea mays/immunology , Zea mays/metabolism , Zea mays/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...