Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Insect Biochem Physiol ; 113(1): e21872, 2023 May.
Article in English | MEDLINE | ID: mdl-35112391

ABSTRACT

This study evaluated the effects of acute exposure of Aedes aegypti third instar (L3 ) larvae to the saline extract of Opuntia ficus-indica cladodes on the biological cycle and fertility of the emerging adults. For this, larvae were treated for 24 h with the extract at » LC50 (lethal concentration to kill 50% of larvae), ½ LC50 or LC50 ; the development and reproduction of the emerged adults were evaluated after a recovery period of 9 days. The resistance of proteins in the extract to hydrolysis by L3 digestive enzymes and histomorphological alterations in the larval midgut were also investigated. The extract contained lectin, flavonoids, cinnamic derivatives, terpenes, steroids, and reducing sugars. It showed a LC50 of 3.71% for 48 h. The data indicated mean survival times similar in control and extract treatments. It was observed development delay in extract-treated groups, with a lower number of adults than in control. However, the females that emerged laid similar number of eggs in control and treatments. Histological evaluation revealed absence of bacterial and fungal microorganisms in the food content in midguts from larvae treated with cladode extract. Electrophoresis revealed that three polypeptides in the extract resisted to hydrolysis by L3 digestive proteases for 90 min. The lectin activity was not altered even after 24-h incubation with the enzymes. In conclusion, the extract from O. ficus-indica can delay the development of Ae. aegypti larvae, which may be linked to induction of an axenic environment at larval midgut and permanence of lectin activity even after proteolysis.


Subject(s)
Aedes , Insecticides , Opuntia , Female , Animals , Lectins/chemistry , Larva , Plant Extracts/pharmacology , Plant Extracts/chemistry , Insecticides/pharmacology
2.
An Acad Bras Cienc ; 94(3): e20211297, 2022.
Article in English | MEDLINE | ID: mdl-35920491

ABSTRACT

Angiogenesis (budding of new blood vessels) is involved in several processes, including the development of embryos and growth of tumors. Schinus terebinthifolia leaves express an antitumor lectin (SteLL). This work hypothesized that SteLL can interfere with the formation of a vascular network from preexisting vessels. To test this hypothesis, the effect of SteLL on the angiogenesis process was assessed using an in vivo model of yolk sac membrane of Coturnix japonica embryos. SteLL was isolated with purification factor of 46.6. As expected, polyacrylamide gel electrophoresis (PAGE) for native basic proteins confirmed the homogeneity and PAGE in presence of dodecyl sodium sulphate revealed a single 14-kDa polypeptide band. The fractal analysis by box counting and information dimension measurements indicated that SteLL at 1.35 mg/mL significantly decreased by ca. 12% the angiogenesis within the C. japonica yolk sac membrane regarding the control. The inhibition of the vascular network formation in the yolk sac membrane resulted in decreased blood supply to the embryos. Consequently, the area of embryos was significantly reduced by 9.2% regarding the control, which corroborated with the antiangiogenic activity of SteLL. The findings implicate SteLL as an antiangiogenic agent and add to the panel of biological activities of this lectin.


Subject(s)
Anacardiaceae , Coturnix , Angiogenesis Inhibitors/pharmacology , Animals , Lectins/pharmacology , Plant Leaves
3.
Pest Manag Sci ; 75(5): 1212-1222, 2019 May.
Article in English | MEDLINE | ID: mdl-30306668

ABSTRACT

The midgut of insects is involved in digestion, osmoregulation and immunity. Although several defensive strategies are present in this organ, its organization and function may be disturbed by some insecticidal agents, including bioactive proteins like lectins and protease inhibitors (PIs) from plants. PIs interfere with digestion, leading to poor nutrient absorption and decreasing amino acid bioavailability. Intake of PIs can delay development, cause deformities and reduce fertility. Ingestion of PIs may lead to changes in the set of proteases secreted in the insect gut, but this response is often insufficient and results in aggravation of the malnutrition status. Lectins are proteins that are able to interact with glycoconjugates, including those linked to cell surfaces. Their effects on the midgut include disruption of the peritrophic matrix, brush border and secretory cell layer; induction of apoptosis and oxidative stress; interference with nutrient absorption and transport proteins; and damaging effects on symbionts. In addition, lectins can cross the intestinal barrier and reach the hemolymph. The establishment of resistant insect populations due to selective pressure resulting from massive use of a bioactive protein is an actual possibility, but this can be minimized by the multiple mode-of-action of these proteins, mainly the lectins. © 2018 Society of Chemical Industry.


Subject(s)
Digestive System/drug effects , Insect Control/methods , Insecta/anatomy & histology , Lectins/pharmacology , Plants/chemistry , Protease Inhibitors/pharmacology , Adaptation, Physiological/drug effects , Animals , Insecta/physiology
4.
Nat Prod Res ; 32(24): 2940-2944, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29047320

ABSTRACT

In this study, Moringa oleifera flower extract and a trypsin inhibitor (MoFTI) isolated from it were evaluated for anti-protozoal activity against Trypanosoma cruzi and cytotoxicity to mammalian cells. The presence of flavonoids was remarkable in the HPLC fingerprints of the extract at 254 and 360 nm. Amino acid sequences of peptides derived from in-gel digestion of MoFTI were determined. Both the extract and MoFTI caused lysis of T. cruzi trypomastigotes with LC50/24 h of 54.18 ± 6.62 and 41.20 ± 4.28 µg/mL, respectively. High selectivity indices (7.9 to >12) for T. cruzi cells over murine peritoneal macrophages and Vero cells were found for the extract and MoFTI. The results show that MoFTI is a trypanocidal principle of the flower extract.


Subject(s)
Flavonoids , Flowers/chemistry , Moringa oleifera/chemistry , Plant Extracts/chemistry , Trypanocidal Agents , Trypanosoma cruzi/drug effects , Trypsin Inhibitors/isolation & purification , Animals , Cell Line , Chlorocebus aethiops , Flavonoids/analysis , Macrophages, Peritoneal/drug effects , Mammals , Mice , Plant Extracts/pharmacology , Trypanocidal Agents/pharmacology , Trypsin Inhibitors/pharmacology , Vero Cells/drug effects
5.
Front Microbiol ; 7: 611, 2016.
Article in English | MEDLINE | ID: mdl-27199940

ABSTRACT

Tecoma stans (yellow elder) has shown medicinal properties and antimicrobial activity. Previous reports on antifungal activity of T. stans preparations and presence of trypsin inhibitor activity from T. stans leaves stimulated the investigation reported here. In this work, we proceeded to the purification and characterization of a trypsin inhibitor (TesTI), which was investigated for anti-Candida activity. Finally, in order to determine the potential of TesTI as a new natural chemotherapeutic product, its cytotoxicity to human peripheral blood mononuclear cells (PBMCs) was evaluated. TesTI was isolated from saline extract by ammonium sulfate fractionation followed by ion exchange and gel filtration chromatographies. Antifungal activity was evaluated by determining the minimal inhibitory (MIC) and fungicide (MFC) concentrations using fungal cultures containing only yeast form or both yeast and hyphal forms. Candida cells treated with TesTI were evaluated for intracellular ATP levels and lipid peroxidation. Cytotoxicity of TesTI to PBMCs was evaluated by MTT assay. TesTI (39.8 kDa, pI 3.41, K i 43 nM) inhibited similarly the growth of both C. albicans and C. krusei culture types at MIC of 100 µg/mL. The MFCs were 200 µg/mL for C. albicans and C. krusei. Time-response curves revealed that TesTI (at MIC) was more effective at inhibiting the replication of C. albicans cells. At MIC, TesTI promoted reduction of ATP levels and lipid peroxidation in the Candida cells, being not cytotoxic to PBMCs. In conclusion, TesTI is an antifungal agent against C. albicans and C. krusei, without toxicity to human cells.

6.
Exp Parasitol ; 156: 37-41, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26044355

ABSTRACT

Lactones are organic cyclic esters that have been described as larvicides against Aedes aegypti and as components of oviposition pheromone of Culex quinquefasciatus. This work describes the effect of six α,ß-unsaturated lactones (5a-5f) on survival of A. aegypti fourth instar larvae (L4). It is also reported the effects of the lactones on L4 gut trypsin activity and oviposition behavior of A. aegypti females. Five lactones were able to kill L4 being the lactones 5a (LC50 of 39.05 ppm), 5e (LC50 of 36.30 ppm) and 5f (LC50 of 40.46 ppm) the most promising larvicides. Only the lactone 5a inhibited L4 gut trypsin activity, with an IC50 of 115.15 µg/mL. Lactones 5a, 5c, 5d and 5e did not exert deterrent or stimulatory effects on oviposition, whereas lactone 5b exhibited a strong deterrent oviposition activity. In conclusion, this work introduces new α,ß-unsaturated lactones as promising alternatives to control A. aegypti dissemination. The larvicidal mechanism of the lactone 5a can involve the disruption of proteolysis at larval gut.


Subject(s)
Aedes/drug effects , Insect Vectors/drug effects , Insecticides/pharmacology , Lactones/pharmacology , Oviposition/drug effects , Trypsin/drug effects , Aedes/physiology , Animals , Female , Inhibitory Concentration 50 , Insect Vectors/physiology , Insecticides/chemistry , Lactones/chemistry , Larva/drug effects , Trypsin/metabolism , Trypsin Inhibitors/pharmacology
7.
Chemosphere ; 132: 188-92, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25867917

ABSTRACT

This study reports the effect of an aqueous extract from Moringa oleifera Lam. flowers on Biomphalaria glabrata embryos and adults and on Schistosoma mansoni adult worms. The extract contains tannins, saponins, flavones, flavonols, xanthones, and trypsin inhibitor activity. The toxicity of the extract on Artemia salina larvae was also investigated to determine the safety of its use for schistosomiasis control. After incubation for 24h, the flower extract significantly (p<0.05) delayed the development of B. glabrata embryos and promoted mortality of adult snails (LC50: 2.37±0.5mgmL(-1)). Furthermore, treatment with the extract disrupted the development of embryos generated by snails, with most of them remaining in the blastula stage while control embryos were already in the gastrula stage. Flower extract killed A. salina larvae with a LC50 value (0.2±0.015mgmL(-1)) lower than that determined for snails. A small reduction (17%) in molluscicidal activity was detected when flower extract (2.37mgmL(-1)) was exposed to tropical environmental conditions (UVI index ranging from 1 to 14, temperature from 25 to 30°C, and 65% relative humidity). Toxicity to A. salina was also reduced (LC50 value of 0.28±0.01mgmL(-1)). In conclusion, M. oleifera flower extract had deleterious effects on B. glabrata adults and embryos. However, unrestricted use to control schistosomiasis should be avoided due to the toxicity of this extract on A. salina.


Subject(s)
Anthelmintics/toxicity , Artemia/drug effects , Biomphalaria/drug effects , Moringa oleifera , Plant Extracts/toxicity , Schistosoma mansoni/drug effects , Animals , Biomphalaria/growth & development , Flowers , Larva/drug effects
8.
Food Chem ; 135(3): 1848-54, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22953932

ABSTRACT

This work reports the detection and characterization of caseinolytic and milk-clotting activities from Moringa oleifera flowers. Proteins extracted from flowers were precipitated with 60% ammonium sulphate. Caseinolytic activity of the precipitated protein fraction (PP) was assessed using azocasein, as well as α(s)-, ß- and κ-caseins as substrates. Milk-clotting activity was analysed using skim milk. The effects of heating (30-100°C) and pH (3.0-11.0) on enzyme activities were determined. Highest caseinolytic activity on azocasein was detected after previous incubation of PP at pH 4.0 and after heating at 50°C. Milk-clotting activity, detected only in the presence of CaCl(2), was highest at incubation of PP at pH 3.0 and remained stable up to 50°C. The pre-treatment of milk at 70°C resulted in highest clotting activity. Enzyme assays in presence of protease inhibitors indicated the presence of aspartic, cysteine, serine and metallo proteases. Aspartic proteases appear to be the main enzymes involved in milk-clotting activity. PP promoted extensive cleavage of κ-casein and low level of α(s)- and ß-caseins hydrolysis. The milk-clotting activity indicates the application of M. oleifera flowers in dairy industry.


Subject(s)
Caseins/chemistry , Flowers/chemistry , Milk/chemistry , Moringa oleifera/chemistry , Plant Extracts/pharmacology , Animals , Cattle , Hydrogen-Ion Concentration , Hydrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...