Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Res ; 88(4): 468-474, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34866559

ABSTRACT

The work reported in this paper addresses the iodine nutritional deficiency that still affects a large number of people. For this purpose, we analyzed the possibility to use, as iodine vehicle, a hard typical ewe cheese, called Canestrato d'Abruzzo, derived from milk of ewes fed with an iodine-fortified diet. Both in the milk and the cheese of these animals, the iodine level was higher than that measured in sheep with a normal diet. An increase in the lactoferrin and iron content was evident in the whey derived from milk of the iodine group. Furthermore, in derived cheese, the caseins seemed more efficiently transformed in small peptides making the product more digestible and, for this reason, particularly suitable for feeding the elderly. In conclusion, the dairy products obtained from ewes fed with iodine diet contain more bioactive compounds so that they represent a useful food to prevent iodine and iron deficiency in lamb and humans.


Subject(s)
Cheese , Iodine , Animals , Diet/veterinary , Dietary Supplements , Female , Milk , Sheep
2.
Antibiotics (Basel) ; 9(12)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255172

ABSTRACT

The peptide SET-M33 is a molecule synthesized in tetra-branched form which is being developed as a new antibiotic against Gram-negative bacteria. Its isomeric form with D amino acids instead of the L version (SET-M33D) is also able to kill Gram-positive bacteria because of its higher resistance to bacterial proteases (Falciani et al., PLoS ONE, 2012, 7, e46259). Here we report the strong in vitro activity of SET-M33D (MIC range 0.7-6.0 µM) against multiresistant pathogens of clinical interest, including Gram-positives Staphylococcus aureus, Staphylococcus saprophyticus, and Enterococcus faecalis, and various Gram-negative enterobacteriaceae. SET-M33D antibacterial activity is also confirmed in vivo against a MRSA strain of S. aureus with doses perfectly compatible with clinical use (5 and 2.5 mg/Kg). Moreover, SET-M33D strongly neutralized lipopolysaccharide (LPS) and lipoteichoic acid (LTA), thus exerting a strong anti-inflammatory effect, reducing expression of cytokines, enzymes, and transcription factors (TNF-α, IL6, COX-2, KC, MIP-1, IP10, iNOS, NF-κB) involved in the onset and evolution of the inflammatory process. These results, along with in vitro and in vivo toxicity data and the low frequency of resistance selection reported here, make SET-M33D a strong candidate for the development of a new broad spectrum antibiotic.

SELECTION OF CITATIONS
SEARCH DETAIL
...