Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Deliv Transl Res ; 14(5): 1277-1300, 2024 May.
Article in English | MEDLINE | ID: mdl-37953430

ABSTRACT

Breast cancer is reported as one of the most prevalent non-cutaneous malignancies in women. Venetoclax (VEN) is an approved BCl-2 inhibitor for the treatment of chronic myeloid leukemia with very limited oral bioavailability and exhibits an enormous impact on breast cancer. In the current investigation, venetoclax-loaded self-nanoemulsifying drug delivery systems (VEN-SNEDDS) were designed and fabricated to improve the aqueous solubility, permeability, and anticancer efficacy of VEN. Various surface-active parameters of the reconstituted SNEDDS were determined to scrutinize the performance of the selected surfactant mixture. Central composite design (CCD) was used to optimize the VEN-SNEDDS. The globule size of reconstituted VEN-SNEDDS was 71.3 ± 2.8 nm with a polydispersity index of 0.113 ± 0.01. VEN-SNEDDS displayed approximately 3-4 fold, 6-7 fold, and 5-6 fold reduced IC50 as compared to free VEN in MDA-MB-231, MCF-7, and T47 D cells, respectively. VEN-SNEDDS showed greater cellular uptake, apoptosis, reactive oxygen species generation, and higher BAX/BCL2 ratio with decreased caspase 3 and 8 and BCL-2 levels in the MDA-MB-231 cells compared to pure VEN. VEN-SNEDDS exhibited approximately fivefold enhancement in Cmax and an improved oral bioavailability compared to VEN suspension in in vivo pharmacokinetic studies.


Subject(s)
Breast Neoplasms , Bridged Bicyclo Compounds, Heterocyclic , Nanoparticles , Sulfonamides , Humans , Female , Emulsions , Drug Delivery Systems , Solubility , Surface-Active Agents , Biological Availability , Breast Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-2 , Administration, Oral , Particle Size
2.
Int J Biol Macromol ; 258(Pt 1): 128821, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38110163

ABSTRACT

Our main aim to design and develop a novel 4-carboxy phenyl boronic acid (4-CPBA) conjugated Palbociclib (PALB) loaded pH-sensitive chitosan lipid nanoparticles (PPCL) to enhance the anti-cancer efficacy of the PALB in in-vitro cell line studies by loading into 4-CPBA conjugated chitosan lipid nanoparticles. 4-CPBA was conjugated to chitosan by carbodiimide chemistry and formation of conjugate was confirmed by 1HNMR, ATR-FTIR spectroscopic techniques. Ionic-gelation method was used for the fabrication of PPCL and particles size, PDI, zeta potential were found to be 226.5 ± 4.3 nm, 0.271 ± 0.014 and 5.03 ± 0.42 mV. Presence of pH-sensitive biological macromolecule i.e. chitosan in the carrier system provides pH-sensitivity to PPCL and sustainedly released the drug upto 144 h. The PPCL exhibited approximately 7.2, 6.6, and 5-fold reduction in IC50 values than PALB in MCF-7, MDA-MB-231 and 4T1 cells. Receptor blocking assay concluded that the fabricated nanoparticles were internalized into MCF-7 cells might be through sialic acid-mediated endocytosis. PPCL caused extensive mitochondrial depolarization, enhanced ROS generation, apoptosis (DAPI nuclear staining, acridine orange/ ethidium bromide dual staining), and reduced % cell migration than pure PALB. It was concluded that the hybrid lipid-polymer nanoparticles provides an optimistic approach for the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Chitosan , Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Lecithins/chemistry , Chitosan/chemistry , Nanoparticles/chemistry , MCF-7 Cells , Hydrogen-Ion Concentration , Drug Carriers/chemistry , Particle Size
3.
Biomed Chromatogr ; 38(4): e5815, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38128133

ABSTRACT

The current research involved the development and validation of an easy, cost-effective, and sensitive bioanalytical reverse-phase high-performance liquid chromatography method for the assessment of palbociclib (PAL) in rat plasma and kidney, liver, spleen and heart. A response surface methodology-based Box-Behnken design was used to optimize critical chromatographic conditions such as buffer pH, organic phase concentration and flow rate to attain good sensitivity, tailing factor and retention time. The conditions were: pH of buffer, 4.5; organic phase concentration, 40%; Shimpac column with 1.0 ml/min flow rate. The responses were: tailing factor, 1.29 ± 0.03, sensitivity, 366,593 ± 8,592; and retention time, 4.5 ± 0.05 min. The samples were extracted by a protein precipitation method, and absolute recoveries were in the range of 88.99-95.08%. The linearity of the developed method was validated over the range 100-2,000 ng/ml (r2 ≥ 0.994) in all tested matrices. The developed bioanalytical method showed greater accuracy (0.98 and 4.01%) and precision (<4.88%). The method was optimized for the sensitive analysis of the PAL in rat plasma, and the kidney, liver, spleen and heart were effectively applied to pharmacokinetic studies.


Subject(s)
Chromatography, Reverse-Phase , Pyridines , Rats , Animals , Chromatography, High Pressure Liquid/methods , Piperazines/analysis
4.
Int J Pharm ; 640: 123006, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37137420

ABSTRACT

Uveitis is a sight-threatening disease that causes inflammation in the uvea; difluprednate (DFB) is the first approved drug molecule for postoperative pain, inflammation, and endogenous uveitis. Complex ocular physiology and structure make it difficult to deliver drugs to the eye. Increased permeation and retention in the layer of the eye are required to improve the bioavailability of ocular drugs. In the current research investigation, DFB-loaded lipid polymer hybrid nanoparticles (LPHNPs) were designed and fabricated to enhance the corneal permeation and sustained release of DFB. A well-established two-step approach was used to fabricate the DFB-LPHNPs, comprising of Poly-Lactic-co-Glycolic Acid (PLGA) core that entrapped the DFB and DFB loaded PLGA NPs covered by lipid shell. The manufacturing parameters were optimized for the preparation of DFB-LPHNPs; the optimal DFB-LPHNPs showed a mean particle size of 117.3 ± 2.9 nm, suitable for ocular administration and high entrapment efficiency of 92.45 ± 2.17 % with neutral pH (7.18 ± 0.02) and isotonic Osmolality (301 ± 3 mOsm/kg). Microscopic examination confirms the core-shell morphological structure of DFB-LPHNPs. The prepared DFB-LPHNPs were extensively characterized using spectroscopic techniques and physicochemical characterization, which confirms the entrapment of the drug and the formation of the DFB-LPHNPs. The confocal laser scanning microscopy studies revealed that Rhodamine B-loaded LPHNPs were penetrated into stromal layers of the cornea in ex-vivo conditions. The DFB-LPHNPs showed a sustained release pattern in simulated tear fluid and 4- folds enhanced permeation of DFB as compared to pure DFB solution. The ex-vivo histopathological studies revealed that DFB-LPHNPs didn't cause any damage or no alteration in the cellular structure of the cornea. Additionally, the results of the HET-CAM assay confirmed that the DFB-LPHNPs were not toxic for ophthalmic administration.


Subject(s)
Nanoparticles , Polymers , Humans , Delayed-Action Preparations , Polymers/chemistry , Nanoparticles/chemistry , Lipids/chemistry , Inflammation , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...