Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 25(4): 869-73, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25592710

ABSTRACT

A number of prodrugs of HCV-active purine nucleoside analogues 2'-C-methyl 4-aza-9-deaza adenosine 1, 2'-C-methyl 4-aza-7,9-dideaza adenosine 2, 2'-C-methyl 4-aza-9-deaza guanosine 3 and 2'-C-methyl 4-aza-7,9-dideaza guanosine 4 were prepared and evaluated to improve potency, selectivity and liver targeting. Phosphoramidate guanosine prodrugs (3a-3k and 4a, b) showed insufficient cell activity for further profiling. Striking enhancement in replicon activity relative to the parent was observed for phosphoramidate imidazo[2,1-f][1,2,4]triazine-4-amine adenosine prodrugs (1a-1p), but this was accompanied by an increase in cytotoxicity. Improved or similar potency without a concomitant increase in toxicity relative to the parent was demonstrated for phosphoramidate pyrrolo[2,1-f][1,2,4]triazine-4-amine adenosine prodrugs (2a-2k). Carbamate, ester and mixed prodrugs of 2 showed mixed results. Selected prodrugs of 2 were analysed for activation to the triphosphate, with most demonstrating much better activation in hepatocytes over replicon cells. The best activation was observed for a mixed phosphoramidate-3'ester (11) followed by a simple 3'-ester (10).


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Nucleosides/pharmacology , Nucleotides/metabolism , Prodrugs/pharmacology , Triazines/chemistry , Humans , In Vitro Techniques , Nucleosides/chemistry , Prodrugs/chemistry
2.
Bioorg Med Chem Lett ; 24(21): 4984-8, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25288185

ABSTRACT

Previous investigations identified 2'-C-Me-branched ribo-C-nucleoside adenosine analogues, 1, which contains a pyrrolo[2,1-f][1,2,4]triazin-4-amine heterocyclic base, and 2, which contains an imidazo[2,1-f][1,2,4]triazin-4-amine heterocyclic base as two compounds with promising anti-HCV in vitro activity. This Letter describes the synthesis and evaluation of a series of novel analogues of these compounds substituted at the 2-, 7-, and 8-positions of the heterocyclic bases. A number of active new HCV inhibitors were identified but most compounds also demonstrated unacceptable cytotoxicity. However, the 7-fluoro analogue of 1 displayed good potency with a promising cytotherapeutic margin.


Subject(s)
Antiviral Agents/pharmacology , Cell Proliferation/drug effects , Hepacivirus/drug effects , Imidazoles/chemistry , Nucleosides/pharmacology , Pyrroles/chemistry , Triazines/chemistry , Virus Replication/drug effects , Antiviral Agents/chemistry , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Hepacivirus/genetics , Hepatitis C/drug therapy , Hepatitis C/virology , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/virology , Molecular Structure , Nucleosides/chemistry , RNA, Viral/genetics , Structure-Activity Relationship , Tumor Cells, Cultured
3.
ACS Med Chem Lett ; 5(6): 679-84, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24944743

ABSTRACT

Nucleoside analogues have long been recognized as prospects for the discovery of direct acting antivirals (DAAs) to treat hepatitis C virus because they have generally exhibited cross-genotype activity and a high barrier to resistance. C-Nucleosides have the potential for improved metabolism and pharmacokinetic properties over their N-nucleoside counterparts due to the presence of a strong carbon-carbon glycosidic bond and a non-natural heterocyclic base. Three 2'CMe-C-adenosine analogues and two 2'CMe-guanosine analogues were synthesized and evaluated for their anti-HCV efficacy. The nucleotide triphosphates of four of these analogues were found to inhibit the NS5B polymerase, and adenosine analogue 1 was discovered to have excellent pharmacokinetic properties demonstrating the potential of this drug class.

4.
J Org Chem ; 73(1): 151-6, 2008 Jan 04.
Article in English | MEDLINE | ID: mdl-18069850

ABSTRACT

The early stages of the retro-Diels-Alder reaction are clearly apparent in the structures of the cycloadducts formed between furan or 5-trimethylsilylcyclopentadiene with maleic anhydride and N-methylmaleimide. The degree of lengthening of the C-C bonds that break in this reaction is clearly related to the known reactivity of these cycloadducts toward this reaction. In the structures of the cycloadducts 21 and 22 derived from 2-methoxyfuran, the early stages of an alternative fragmentation reaction are apparent, consistent with the reactivity of these compounds in solution.


Subject(s)
Cyclopentanes/chemistry , Furans/chemistry , Maleic Anhydrides/chemistry , Maleimides/chemistry , Crystallography, X-Ray , Cyclization , Models, Molecular , Molecular Structure
5.
J Am Chem Soc ; 124(18): 5091-9, 2002 May 08.
Article in English | MEDLINE | ID: mdl-11982374

ABSTRACT

The manifestations of the retro-Diels Alder reaction in the ground-state structures of a range of cyclopentadiene and cyclohexadiene cycloadducts 9-15 have been investigated by a combination of techniques. These include low-temperature X-ray crystallography, density functional calculations (B3LYP/6-31G(d,p)) on both the ground states and transition states, and the measurement of (13)C-(13)C coupling constants. We have found that the carbon-carbon bonds (labeled bonds a and b), which break in the rDA, are longer in the cycloadducts 9-15 than in their corresponding saturated analogues 9s-15s, which cannot undergo the rDA reaction. The degree of carbon-carbon bond lengthening appears to be related to the reactivity of the cycloadduct, thus the more reactive benzoquinone cycloadducts 5b and 13 have longer carbon-carbon bonds. Those cycloadducts 14 and 15 which are predicted to undergo asynchronous reactions show differing degrees of carbon-carbon bond lengthening, reflecting the differing degrees of bond breaking at the calculated transition states for the rDA.

SELECTION OF CITATIONS
SEARCH DETAIL
...