Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Microsc Res Tech ; 85(6): 2222-2233, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35174933

ABSTRACT

Chronic myeloid leukemia (CML) is a myeloproliferative disease and the first line treatment is through the administration of Imatinib, a first generation tyrosine kinase inhibitor. Thrombocytosis and bleeding irregularities are common in CML, however, the morphological variations in CML patients' platelets are not well documented. In this study, ex vivo platelet morphology of control participants, as well as CML patients were assessed before and after Imatinib treatment. The topographical and structural morphology of platelets were determined via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Qualitative data of SEM and TEM revealed that CML patient's platelets were prone to aggregation and coagulation at time of diagnosis; the samples that were not aggregated at time of diagnosis showed typical discoid shaped platelets, which was comparable to control participants' platelets. TEM results of CML patients' platelets at diagnosis showed that internal granular constituents including dense bodies were decreased in comparison to control participants. In all CML patients, platelets appeared activated after 6 months of treatment with Imatinib with membrane structure abnormalities and constituent variations. Research to date has primarily focused on the effects of CML on leukocyte populations, however, the results of the current study implicate the impact of CML pathogenesis on platelets, seemingly as a result of alterations in normal hematopoiesis. In addition, the impact of Imatinib treatment on platelet morphology was also established, indicating an increase in platelet activation. Recognizing and understanding the impact of CML disease progression on platelets is of importance to aid improved patient treatment. RESEARCH HIGHLIGHTS: In the study, results from SEM and TEM indicated that CML patient's platelets were prone to aggregation at time of diagnosis, and activation after Imatnib treatment. Platelet samples that did not aggregate had decreased internal granular constituents.


Subject(s)
Antineoplastic Agents , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Blood Platelets , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Protein Kinase Inhibitors/adverse effects
2.
Membranes (Basel) ; 11(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34068836

ABSTRACT

The study of the microstructure of random heterogeneous materials, related to an electrochemical device, is relevant because their effective macroscopic properties, e.g., electrical or proton conductivity, are a function of their effective transport coefficients (ETC). The magnitude of ETC depends on the distribution and properties of the material phase. In this work, an algorithm is developed to generate stochastic two-phase (binary) image configurations with multiple geometries and polydispersed particle sizes. The recognizable geometry in the images is represented by the white phase dispersed and characterized by statistical descriptors (two-point and line-path correlation functions). Percolation is obtained for the geometries by identifying an infinite cluster to guarantee the connection between the edges of the microstructures. Finally, the finite volume method is used to determine the ETC. Agglomerate phase results show that the geometry with the highest local current distribution is the triangular geometry. In the matrix phase, the most significant results are obtained by circular geometry, while the lowest is obtained by the 3-sided polygon. The proposed methodology allows to establish criteria based on percolation and surface fraction to assure effective electrical conduction according to their geometric distribution; results provide an insight for the microstructure development with high projection to be used to improve the electrode of a Membrane Electrode Assembly (MEA).

3.
Cell Biochem Funct ; 39(4): 562-570, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33569808

ABSTRACT

Chronic myeloid leukaemia (CML) is a malignancy of the haematopoietic stem cells. The first line of treatment for CML, especially in developing countries, remains the first-generation tyrosine kinase inhibitor, Imatinib. Patients with CML are frequently diagnosed with platelet abnormalities. However, the specific mechanism of platelet abnormalities in CML remains unclear and poorly understood. The aim of this study was therefore to determine the apoptotic profiles of CML patients ex vivo on platelets before and after treatment with Imatinib. Blood samples of healthy volunteers and CML patients at diagnosis and after 6 months treatment with Imatinib were collected. Platelet counts, viability and activation were determined. Results showed that CML patients' platelet counts were elevated upon diagnosis and these levels statistically significantly decreased after 6 months of treatment. Platelet activation was significantly increased after 6 months of treatment compared to levels at diagnosis (P-value < .05). Similarly, platelet apoptosis was also increased after 6 months of treatment. Abnormalities in platelet functioning found in this study may partly be due to clonal proliferation of haematopoietic cells in CML patients, specifically of megakaryocyte precursors as well as the inhibition of platelet tyrosine kinase's and the inhibition of platelet-derived growth factor.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/pharmacology , Adolescent , Adult , Antineoplastic Agents/blood , Female , Humans , Imatinib Mesylate/blood , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Male , Middle Aged , Platelet Activation/drug effects , Platelet-Derived Growth Factor/antagonists & inhibitors , Platelet-Derived Growth Factor/metabolism , Protein Kinase Inhibitors/blood , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Young Adult
5.
Cancer Cell Int ; 17: 89, 2017.
Article in English | MEDLINE | ID: mdl-29118670

ABSTRACT

Amongst males, leukaemia is the most common cause of cancer-related death in individuals younger than 40 years of age whereas in female children and adolescents, leukaemia is the most common cause of cancer-related death. Chronic myeloid leukaemia (CML) is a chronic leukaemia of the haematopoietic stem cells affecting mostly adults. The disease results from a translocation of the Philadelphia chromosome in stem cells of the bone marrow. CML patients usually present with mild to moderate anaemia and with decreased, normal, or increased platelet counts. CML represents 0.5% of all new cancer cases in the United States (2016). In 2016, an estimated 1070 people would die of this disease in the United States. Platelets serve as a means for tumours to increase growth and to provide physical- and mechanical support to elude the immune system and to metastasize. Currently there is no literature available on the role that platelets play in CML progression, despite literature reporting the fact that platelet count and size are affected. Resistance to CML treatment with tyrosine kinase inhibitors can be as a result of acquired resistance ensuing from mutations in the tyrosine kinase domains, loss of response or poor tolerance. In CML this resistance has recently become linked to bone marrow (BM) angiogenesis which aids in the growth and survival of leukaemia cells. The discovery of the lungs as a site of haematopoietic progenitors, suggests that CML resistance is not localized to the bone marrow and that the mutations leading to the disease and resistance to treatment may also occur in the haematopoietic progenitors in the lungs. In conclusion, platelets are significantly affected during CML progression and treatment. Investigation into the role that platelets play in CML progression is vital including how treatment affects the cell death mechanisms of platelets.

6.
Mol Clin Oncol ; 7(3): 386-390, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28781815

ABSTRACT

Micro-ribonucleic acids (miRNAs) are small functional non-coding RNAs that downregulate gene expression at the post-transcriptional level. Abnormal expression of specific miRNAs has been recorded in chronic lymphocytic leukaemia, other non-Hodgkin B-cell lymphomas, lung cancer and chronic myeloid leukaemia (CML). The aim of this study was to compare miRNA expression profiles among patients with newly diagnosed CML, those on established therapy with imatinib mesylate, and healthy individuals. The expression of 88 miRNAs was evaluated in a total of nine samples divided into three groups: Group 1 comprised three samples collected from newly diagnosed CML patients; group 2 consisted of three samples collected from patients on therapy; the remaining three samples were collected from healthy volunteers (control group). Total RNA was extracted from whole blood and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was performed on the LightCycler® 480 platform using Human Serum & Plasma miRNA PCR Arrays. In group 1, only SNORD44 was downregulated, while hsa-miR-372 and hsa-miR-375 were found to be significantly upregulated compared with the control group. By contrast, 49 miRNAs were significantly upregulated in group 2 compared with the control group. miRNAs hsa-miR-106b, hsa-miR-21, hsa-miR-221, hsa-miR-10a, hsa-miR-193a-5p and hsa-miR-30e were expressed in group 2. Therefore, miRNA expression profiles differed between the two patient groups.

7.
J Infect ; 74(6): 599-608, 2017 06.
Article in English | MEDLINE | ID: mdl-28267572

ABSTRACT

OBJECTIVES: Platelets orchestrate the inflammatory activities of neutrophils, possibly contributing to pulmonary and myocardial damage during severe pneumococcal infection. This study tested the hypothesis that the pneumococcal toxin, pneumolysin (Ply), activates production of platelet-activating factor (PAF) and thromboxane A2 (TxA2) by neutrophils, these bioactive lipids being potential mediators of neutrophil:platelet (NP) networking. METHODS: The effects of recombinant Ply (10-80 ng mL-1) on the production of PAF and TxA2 by isolated neutrophils were measured using ELISA procedures, and NP aggregation by flow cytometry. RESULTS: Exposure of neutrophils to Ply induced production of PAF and, to a lesser extent, TxA2, achieving statistical significance at ≥20 ng mL-1 of the toxin. In the case of NP interactions, Ply promoted heterotypic aggregation which was dependent on upregulation of P-selectin (CD62P) and activation of protease-activated receptor 1 (PAR1), attaining statistical significance at ≥10 ng mL-1 of the toxin, but did not involve either PAF or TxA2. CONCLUSION: Ply induces synthesis of PAF and TxA2, by human neutrophils, neither of which appears to contribute to the formation of NP heterotypic aggregates in vitro, a process which is seemingly dependent on CD62P and PAR1. These pro-inflammatory activities of Ply may contribute to the pathogenesis of pulmonary and myocardial injury during severe pneumococcal infection.


Subject(s)
Blood Platelets/physiology , Cell Aggregation , Neutrophils/physiology , Platelet Aggregation , Streptolysins/pharmacology , Streptolysins/physiology , Bacterial Proteins/pharmacology , Bacterial Proteins/physiology , Carrier Proteins/biosynthesis , Cell Survival , DNA-Binding Proteins , Humans , Neutrophil Activation , P-Selectin/genetics , Platelet Activation , Recombinant Proteins/pharmacology , Streptococcus pneumoniae/chemistry , Thromboxane A2/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL