Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202407970, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962950

ABSTRACT

Combining simple amines with the bench-stable sulfinylamine Tr-NSO allows in situ preparation of reactive alkyl sulfinylamines, which when combined with alkyl radicals generated by photocatalytic decarboxylation, provides N-alkyl sulfinamides. The reactions are broad in scope and tolerate a wide variety of functional groups on both the acid and amine components. The sulfinamide products are used to prepare a selection of challenging S(VI) products. The method provides a convenient way to use reactive and unstable alkyl sulfinylamines.

2.
Nat Chem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951616

ABSTRACT

The selective hetero-dihalogenation of alkenes provides useful building blocks for a broad range of chemical applications. Unlike homo-dihalogenation, selective hetero-dihalogenation reactions, especially fluorohalogenation, are underdeveloped. Current approaches combine an electrophilic halogen source with a nucleophilic halogen source, which necessarily leads to anti-addition, and regioselectivity has only been achieved using highly activated alkenes. Here we describe an alternative, nucleophile-nucleophile approach that adds chloride and fluoride ions over unactivated alkenes in a highly regio-, chemo- and diastereoselective manner. A curious switch in the reaction mechanism was discovered, which triggers a complete reversal of the diastereoselectivity to promote either anti- or syn-addition. The conditions are demonstrated on an array of pharmaceutically relevant compounds, and detailed mechanistic studies reveal the selectivity and the switch between the syn- and anti-diastereomers are based on different active iodanes and which of the two halides adds first.

3.
J Med Chem ; 67(12): 10464-10489, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38866424

ABSTRACT

The bromodomain and extra terminal (BET) family of bromodomain-containing proteins are important epigenetic regulators that elicit their effect through binding histone tail N-acetyl lysine (KAc) post-translational modifications. Recognition of such markers has been implicated in a range of oncology and immune diseases and, as such, small-molecule inhibition of the BET family bromodomain-KAc protein-protein interaction has received significant interest as a therapeutic strategy, with several potential medicines under clinical evaluation. This work describes the structure- and property-based optimization of a ligand and lipophilic efficient pan-BET bromodomain inhibitor series to deliver candidate I-BET787 (70) that demonstrates efficacy in a mouse model of inflammation and suitable properties for both oral and intravenous (IV) administration. This focused two-phase explore-exploit medicinal chemistry effort delivered the candidate molecule in 3 months with less than 100 final compounds synthesized.


Subject(s)
Administration, Intravenous , Animals , Administration, Oral , Mice , Structure-Activity Relationship , Humans , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Molecular Structure
4.
Org Lett ; 26(14): 2697-2701, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-37204455

ABSTRACT

Tertiary C-F bonds are important structural designs; however, they suffer from challenging synthesis. Current methodologies use corrosive amine-HF salts or expensive and hazardous catalysts and reagents. Our group recently introduced collidinium tetrafluoroborate as an efficient fluorinating agent for anodic decarboxyfluorination reactions. Nevertheless, tertiary carboxylic acids are less readily available and more challenging to prepare than their alcohol analogues. Herein we report a practical, mild, and cheap electrochemical method to achieve deoxyfluorination of hindered carbon centers.

5.
Chemistry ; 30(12): e202304070, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38117748

ABSTRACT

Bicyclo[1.1.1]pentane (BCP) derivatives have attracted significant recent interest in drug discovery as alkyne, tert-butyl and arene bioisosteres, where their incorporation is frequently associated with increased compound solubility and metabolic stability. While strategies for functionalisation of the bridgehead (1,3) positions are extensively developed, platforms allowing divergent substitution at the bridge (2,4,5) positions remain limited. Recent reports have introduced 1-electron strategies for arylation and incorporation of a small range of other substituents, but are limited in terms of scope, yields or practical complexity. Herein, we show the synthesis of diverse 1,2,3-trifunctionalised BCPs through lithium-halogen exchange of a readily accessible BCP bromide. When coupled with medicinally relevant product derivatisations, our developed 2-electron "late stage" approach provides rapid and straightforward access to unprecedented BCP structural diversity (>20 hitherto-unknown motifs reported). Additionally, we describe a method for the synthesis of enantioenriched "chiral-at-BCP" bicyclo[1.1.1]pentanes through a novel stereoselective bridgehead desymmetrisation.

6.
J Am Chem Soc ; 145(39): 21623-21629, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37738304

ABSTRACT

sulfinamides, sulfonamides, and sulfonimidamides are in-demand motifs in medicinal chemistry, yet methods for the synthesis of alkyl variants that start from simple, readily available feedstocks are scarce. In addition, bespoke syntheses of each class of molecules are usually needed. In this report, we detail the synthesis of these three distinct sulfur functional groups, using readily available and structurally diverse alkyl carboxylic acids as the starting materials. The method harnesses alkyl radical generation from carboxylic acids using acridine photocatalysts and 400 nm light with subsequent radical addition to sulfinylamine reagents, delivering sulfinamide products. Using the N-alkoxy sulfinylamine reagent t-BuO-NSO as the radical trap provides common N-alkoxy sulfinamide intermediates, which can be converted in a divergent manner to either sulfonamides or sulfonimidamides, by treatment with sodium hydroxide, or an amine, respectively. The reactions are scalable, tolerate a broad range of functional groups, and can be used for the diversification of complex biologically active compounds.

7.
Angew Chem Int Ed Engl ; 62(38): e202309563, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37540528

ABSTRACT

Hydrogenation reactions are staple transformations commonly used across scientific fields to synthesise pharmaceuticals, natural products, and various functional materials. However, the vast majority of these reactions require the use of a toxic and costly catalyst leading to unpractical, hazardous and often functionally limited conditions. Herein, we report a new, general, practical, efficient, mild and high-yielding hydrogen-free electrochemical method for the reduction of alkene, alkyne, nitro and azido groups. Finally, this method has been applied to deuterium labelling.

8.
Org Lett ; 25(9): 1353-1358, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36856464

ABSTRACT

A practical electrochemical method for the rapid, safer, and mild synthesis of tertiary hindered alkyl fluorides from carboxylic acids has been developed without the need for hydrofluoric acid salts or non-glass reactors. In this anodic fluorination, collidinium tetrafluoroborate acts as both the supporting electrolyte and fluoride donor. A wide range of functional groups has been shown to be compatible, and the possibility of scale-up using flow electrochemistry has also been demonstrated.

9.
Org Lett ; 25(12): 2053-2057, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36929825

ABSTRACT

Herein, we report the decarboxylative Minisci heteroarylation of bicyclo[1.1.1]pentane (BCP) and 2-oxabicyclo[2.1.1]hexane (oBCH) derivatives at the bridge positions. In an operationally simple, photocatalyst-free process, free bridge carboxylic acids are directly coupled with nonprefunctionalized heteroarenes to provide rare examples of polysubstituted BCP and oBCH derivatives in synthetically useful yields. Additionally, the impact of the BCP core on the physicochemical properties of a representative example compared to those of its all-aromatic ortho- and meta-substituted analogues is evaluated.

10.
Org Lett ; 25(7): 1147-1150, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36787535

ABSTRACT

Isothiocyanates are ubiquitous building blocks used across the fields. Nevertheless, their classical syntheses very often rely on the use of toxic and expensive reagents. Herein, we report a new practical, mild, high-yielding, and supporting-electrolyte-free electrochemical method for the preparation of aliphatic and aromatic isothiocyanates from amine and carbon disulfide.

11.
Angew Chem Int Ed Engl ; : e202218195, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36705627

ABSTRACT

We report a general procedure for the direct mono- and di-hydrodefluorination of ArCF3 compounds. Exploiting the tunability of electrochemistry and the selectivity enabled by a Ni cathode, the deep reduction garners high selectivity with good to excellent yields up to gram scale. The late-stage peripheral editing of CF3 feedstocks to construct fluoromethyl moieties will aid the rapid diversification of lead-compounds and compound libraries.

12.
Org Lett ; 25(4): 614-618, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36688518

ABSTRACT

A simple method for the C-4 alkylation of isoquinolines is described using benzoic acid as a nucleophilic reagent and vinyl ketones as an electrophile. The reaction shows tolerance for substitution at C-3, and C-5-C-8 positions as well as allowing some variation of the vinyl ketone electrophiles. The products contain a carbonyl that can act as a synthetic handle for further manipulations giving esters, amines, or simple alkyl products.

14.
J Med Chem ; 65(22): 15174-15207, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36378954

ABSTRACT

The bromodomain and extra terminal (BET) family of proteins are an integral part of human epigenome regulation, the dysregulation of which is implicated in multiple oncology and inflammatory diseases. Disrupting the BET family bromodomain acetyl-lysine (KAc) histone protein-protein interaction with small-molecule KAc mimetics has proven to be a disease-relevant mechanism of action, and multiple molecules are currently undergoing oncology clinical trials. This work describes an efficiency analysis of published GSK pan-BET bromodomain inhibitors, which drove a strategic choice to focus on the identification of a ligand-efficient KAc mimetic with the hypothesis that lipophilic efficiency could be drastically improved during optimization. This focus drove the discovery of the highly ligand-efficient and structurally distinct benzoazepinone KAc mimetic. Following crystallography to identify suitable growth vectors, the benzoazepinone core was optimized through an explore-exploit structure-activity relationship (SAR) approach while carefully monitoring lipophilic efficiency to deliver I-BET432 (41) as an oral candidate quality molecule.


Subject(s)
Lysine , Transcription Factors , Humans , Lysine/metabolism , Ligands , Protein Domains , Histones/metabolism
15.
Sci Rep ; 12(1): 4595, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35302062

ABSTRACT

Most cases of cystic fibrosis (CF) are caused by class 2 mutations in the cystic fibrosis transmembrane regulator (CFTR). These proteins preserve some channel function but are retained in the endoplasmic reticulum (ER). Partial rescue of the most common CFTR class 2 mutant, F508del-CFTR, has been achieved through the development of pharmacological chaperones (Tezacaftor and Elexacaftor) that bind CFTR directly. However, it is not clear whether these drugs will rescue all class 2 CFTR mutants to a medically relevant level. We have previously shown that the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen can correct F508del-CFTR trafficking. Here, we utilized RNAi and pharmacological inhibitors to determine the mechanism of action of the NSAID glafenine. Using cellular thermal stability assays (CETSAs), we show that it is a proteostasis modulator. Using medicinal chemistry, we identified a derivative with a fourfold increase in CFTR corrector potency. Furthermore, we show that these novel arachidonic acid pathway inhibitors can rescue difficult-to-correct class 2 mutants, such as G85E-CFTR > 13%, that of non-CF cells in well-differentiated HBE cells. Thus, the results suggest that targeting the arachidonic acid pathway may be a profitable way of developing correctors of certain previously hard-to-correct class 2 CFTR mutations.


Subject(s)
Cystic Fibrosis , Glafenine , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arachidonic Acid , Cyclooxygenase 2/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Glafenine/therapeutic use , Humans , Mutation
16.
Chemistry ; 28(13): e202103728, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35076117

ABSTRACT

An electrochemical method for the green and practical synthesis of a broad range of substituted isoxazoline cores is presented. Both aryl and more challenging alkyl aldoximes are converted to the desired isoxazoline in an electrochemically enabled regio- and diastereoselective reaction with electron-deficient alkenes. Additionally, in-situ reaction monitoring methods compatible with electrochemistry equipment have been developed in order to probe the reaction pathway. Supporting analyses from kinetic (time-course) modelling and density functional theory support a stepwise, radical-mediated mechanism, and discounts hypothesised involvement of closed shell [3+2] cycloaddition pathways.


Subject(s)
Alkenes , Isoxazoles , Cycloaddition Reaction , Electrons , Oximes
17.
Chem Sci ; 12(40): 13392-13397, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34777757

ABSTRACT

Through the use of model studies, an approach was conceived towards the synthesis of the taiwanschirin family of natural products. These are structurally complex compounds which represent highly challenging and biologically active targets for total synthesis. This work describes a successful synthesis of the complex taiwanschirin fused [8,6,5] core through a novel alkynylation reaction coupled with an intramolecular Heck reaction used to construct the 8-membered ring.

18.
J Org Chem ; 86(22): 16095-16103, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34766770

ABSTRACT

The 3-substituted chromane core is found in several bioactive natural products. Herein, we describe a route to 3-fluorinated chromanes from allylic phenol ethers. Our external oxidant-free approach takes advantage of an electrochemical generation of a hypervalent iodine species, difluoro-λ3-tolyl iodane, which mediates the alkene fluoroarylation. High yields and selectivity for this transformation are achieved for electron poor substrates. The redox chemistry has been characterized for the electrochemical generation of the iodane in the presence of fluoride, and insights into the mechanism are given. The transformation has been demonstrated on gram scales, which indicates the potential broader utility of the process.


Subject(s)
Alkenes , Iodine , Ethers , Oxidation-Reduction , Phenols
19.
Org Lett ; 23(21): 8488-8493, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34648294

ABSTRACT

Synthetically versatile alkyl sulfinates can be prepared from readily available amines, using Katritzky pyridinium salt intermediates. In a catalyst-free procedure, primary, secondary, and benzylic alkyl radicals are generated by photoinduced or thermally induced single-electron transfer (SET) from an electron donor-acceptor (EDA) complex, and trapped by SO2 to generate sulfonyl radicals. Hydrogen atom transfer (HAT) from Hantzsch ester gives alkyl sulfinate products, which are used to prepare a selection of medicinal chemistry relevant sulfonyl-containing motifs.

20.
Angew Chem Int Ed Engl ; 60(47): 24754-24769, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34151501

ABSTRACT

"Escaping from flatland", by increasing the saturation level and three-dimensionality of drug-like compounds, can enhance their potency, selectivity and pharmacokinetic profile. One approach that has attracted considerable recent attention is the bioisosteric replacement of aromatic rings, internal alkynes and tert-butyl groups with bicyclo[1.1.1]pentane (BCP) units. While functionalisation of the tertiary bridgehead positions of BCP derivatives is well-documented, functionalisation of the three concyclic secondary bridge positions remains an emerging field. The unique properties of the BCP core present considerable synthetic challenges to the development of such transformations. However, the bridge positions provide novel vectors for drug discovery and applications in materials science, providing entry to novel chemical and intellectual property space. This Minireview aims to consolidate the major advances in the field, serving as a useful reference to guide further work that is expected in the coming years.

SELECTION OF CITATIONS
SEARCH DETAIL
...