Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 75(12): 5614-26, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11356969

ABSTRACT

Angiogenic Kaposi's sarcoma (KS) skin lesions found in both AIDS and non-AIDS patients are universally associated with infection by the presumed causative agent, known as KS-associated herpesvirus (KSHV) or human herpesvirus 8. KSHV genomes expressing latent state virus-encoded mRNAs and the LANA1 (latent nuclear antigen 1) protein are consistently present in spindle-like tumor cells that are thought to be of endothelial cell origin. Although the KSHV lytic cycle can be induced in rare latently infected primary effusion lymphoma (PEL) cell lines, the ability to transmit or assay infectious KSHV has so far eluded investigators. Here, we demonstrate that infection with supernatant virions derived from three different tetradecanoyl phorbol acetate-induced PEL cell lines can induce cultured primary human dermal microvascular endothelial cells (DMVEC) to form colonies of proliferating latently infected spindle-shaped cells, all of which express the KSHV-encoded LANA1 protein. Although their initial infectivity varied widely (JSC1 > > BC3 > BCP1), virions from all three cell lines produced distinctive spindle cell colonies and plaques without affecting the contact-inhibited cobblestone-like phenotype of adjacent uninfected DMVEC. Each infected culture could also be expanded into a completely spindloid persistently infected culture displaying aggregated swirls of spindle cells resembling those in KS lesions. Formation of new colonies and plaques was inhibited in the presence of phosphonoacetic acid or gangciclovir, but these antiherpesvirus agents had little effect on the propagation of already latently infected spindloid cultures. In persistently infected secondary cultures, patches of up to 10% of the spindloid cells constitutively expressed several early viral lytic cycle proteins, and 1 to 2% of the cells also formed typical herpesvirus DNA replication compartments, displayed cytopathic rounding effects, and expressed late viral antigens. We conclude that de novo KSHV infection induces a spindle cell conversion phenotype in primary DMVEC cultures that is directly associated with latent state expression of the LANA1 protein. However, these cultures also spontaneously reactivate to produce an unusual combination of both latent and productive but slow lytic cycle infection. The formation of spindle cell colonies and plaques in DMVEC cultures provides for the first time a quantitative assay for directly measuring the infectivity of KSHV virion preparations.


Subject(s)
Endothelium, Vascular/virology , Herpesviridae Infections/virology , Herpesvirus 8, Human/growth & development , Herpesvirus 8, Human/pathogenicity , Viral Plaque Assay , Antigens, Viral , Cells, Cultured , Cytopathogenic Effect, Viral , DNA Replication , Endothelium, Vascular/cytology , Endothelium, Vascular/pathology , Humans , Immunohistochemistry , Lymphoma/virology , Microcirculation , Nuclear Proteins , Skin/blood supply , Tumor Cells, Cultured/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/pathogenicity , Virus Latency
2.
J Virol ; 73(8): 6646-60, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10400762

ABSTRACT

Kaposi's sarcoma (KS)-associated herpesvirus or human herpesvirus 8 (HHV8) DNA is found consistently in nearly all classical, endemic, transplant, and AIDS-associated KS lesions, as well as in several AIDS-associated lymphomas. We have previously sequenced the genes for the highly variable open reading frame K1 (ORF-K1) protein from more than 60 different HHV8 samples and demonstrated that they display up to 30% amino acid variability and cluster into four very distinct evolutionary subgroups (the A, B, C, and D subtypes) that correlate with the major migrationary diasporas of modern humans. Here we have extended this type of analysis to six other loci across the HHV8 genome to further evaluate overall genotype patterns and the potential for chimeric genomes. Comparison of the relatively conserved ORF26, T0.7/K12, and ORF75 gene regions at map positions 0. 35, 0.85, and 0.96 revealed typical ORF-K1-linked subtype patterns, except that between 20 and 30% of the genomes analyzed proved to be either intertypic or intratypic mosaics. In addition, a 2,500-bp region found at the extreme right-hand side of the unique segment in 45 HHV8 genomes proved to be highly diverged from the 3,500-bp sequence found at this position in the other 18 HHV8 genomes examined. Furthermore, these previously uncharacterized "orphan" region sequences proved to encompass multiexon latent-state mRNAs encoding two highly diverged alleles of the novel ORF-K15 protein. The predominant (P) and minor (M) forms of HHV8 ORF-K15 are structurally related integral membrane proteins that have only 33% overall amino acid identity to one another but retain conserved likely tyrosine kinase signaling motifs and may be distant evolutionary relatives of the LMP2 latency protein of Epstein-Barr virus. The M allele of ORF-K15 is also physically linked to a distinctive M subtype of the adjacent ORF75 gene locus, and in some cases, this linkage extends as far back as the T0.7 locus also. Overall, the results suggest that an original recombination event with a related primate virus from an unknown source introduced exogenous right-hand side ORF-K15(M) sequences into an ancient M form of HHV8, followed by eventual acquisition into the subtype C lineage of the modern P-form of the HHV8 genome and subsequent additional, more recent transfers by homologous recombination events into several subtype A and B lineages as well.


Subject(s)
Alleles , Genetic Variation , Genome, Viral , Herpesvirus 8, Human/genetics , Open Reading Frames , Recombination, Genetic , Amino Acid Sequence , Base Sequence , Chromosome Mapping , DNA, Viral , Genes, Overlapping , Genes, Viral , Genetic Linkage , Genotype , Humans , Molecular Sequence Data
3.
J Natl Cancer Inst Monogr ; (23): 79-88, 1998.
Article in English | MEDLINE | ID: mdl-9709308

ABSTRACT

Strong serologic and molecular probe correlations indicate that the newly discovered gamma herpesvirus KSHV or HHV8 is the likely etiologic agent of all forms of Kaposi's sarcoma as well as BCBL/PEL and MCD in patients with acquired immunodeficiency syndrome (AIDS). Two large segments of HHV8 DNA from an AIDS-associated BCBL tumor covering genomic positions 0-52 kilobase [kb] and 108-140 kb have been cloned, mapped, and partially sequenced. Our studies have focused on novel viral proteins encoded within a 13-kb divergent locus (DL-B) by nine captured homologues of cellular genes, including vIL-6, vDHFR, vTS, vBcl-2, three C-C beta chemokines (vMIP-1A, vMIP-1B, and vBCK), and two LAP/PHD subclass zinc finger proteins (IE1A and IE1B). The HHV-8 vIL-6, vDHFR, vTS, and vBcl-2 proteins have all been shown to be active in a variety of appropriate functional assays, and transcripts from vIL-6, vMIP-1B, vIE1-A, vIE1-B, and vDHFR genes are all expressed as abundant single messenger RNA species after butyrate or phorbol ester (TPA) induction of the lytic cycle in HHV8-positive BCBL cell lines. All of these genes lie within a divergent transcriptional domain that contains a single central enhancer and associated untranslated leader region plus seven distinct proximal promoters, some of which are negatively regulated through AP-1 and ZRE motifs by the EBV ZTA transactivator. This region also encompasses a predicted complex oriLyt domain of 1050 bp that is duplicated in inverted orientation adjacent to the T0.7 latency RNA in another large divergent locus (DL-E). We have previously described three distinct subtypes of the HHV8 genome that differ by 1.0%-1.5% at the nucleotide level within the ORF26 and ORF75 genes. Certain strains or clades appear to have preferential geographic distributions, but it is not known as yet whether there are any specific disease associations. Interestingly, the A, B, and C subtypes of HHV-8 also proved to differ dramatically in coding content at both the extreme left and right ends of the unique segment of the genome as well as in the positions of the junctions with the terminal repeats. On the left-hand side, the receptor-like ORF-K1 protein is highly variable with A-strain subtypes displaying 15% amino acid differences from C strains and up to 30% differences from B strains. On the right-hand side, two unrelated alternative types of the putative multiple membrane spanning ORF-K15 protein are found.


Subject(s)
DNA, Viral/genetics , Genome, Viral , Herpesvirus 8, Human/genetics , Amino Acid Sequence , Genes, Viral , Genetic Variation , Herpesvirus 8, Human/classification , Humans , Interleukin-6/genetics , Molecular Sequence Data , Promoter Regions, Genetic , Sarcoma, Kaposi/virology , Tetrahydrofolate Dehydrogenase/genetics , Thymidylate Synthase/genetics , Transcription, Genetic
4.
Genetics ; 147(2): 467-78, 1997 Oct.
Article in English | MEDLINE | ID: mdl-9335586

ABSTRACT

The PEP7 gene from Saccharomyces cerevisiae encodes a 59-kD hydrophilic polypeptide that is required for transport of soluble vacuolar hydrolase precursors from the TGN to the endosome. This study presents the results of a high-copy suppression analysis of pep7-20 mutant phenotypes. This analysis demonstrated that both VPS45 and PEP12 are allele-specific high-copy suppressors of pep7-20 mutant phenotypes. Overexpression of VPS45 was able to completely suppress the Zn2+ sensitivity and partially suppress the carboxypeptidase Y deficiency. Overexpression of PEP12 was able to do the same, but to a lesser extent. Vps45p and Pep12p are Sec1p and syntaxin (t-SNARE) homologues, respectively, and are also thought to function in transport between the TGN and endosome. Two additional vacuole pathway SNARE complex homologues, Vps33p (Sec1p) and Pth1p (syntaxin), when overexpressed, were unable to suppress pep7-20 or any other pep7 allele, further supporting the specificity of the interactions of pep7-20 with PEP12 and VPS45. Because several other vesicle docking/fusion reactions take place in the cell without discernible participation of Pep7p homologues, we suggest that Pep7p is a step-specific regulator of docking and/or fusion of TGN-derived transport vesicles onto the endosome.


Subject(s)
Cytoskeletal Proteins , Endosomes/metabolism , Fungal Proteins/genetics , Golgi Apparatus/metabolism , Mutation , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/metabolism , Vesicular Transport Proteins , Adaptor Proteins, Signal Transducing , Biological Transport , Carrier Proteins/genetics , Carrier Proteins/metabolism , Fungal Proteins/metabolism , Genes, Suppressor , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phenotype , Qa-SNARE Proteins , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...