Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 2(1): 87-91, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-28722436

ABSTRACT

A distributed sensing capable high temperature D-shaped optical fiber modified with a palladium nanoparticle sensitized mesoporous (∼5 nm) TiO2 film, is demonstrated. The refractive index of the TiO2 film was reduced using block copolymer templating in order to realize a mesoporous matrix, accommodating integration with optical fiber. The constructed sensor was analyzed by performing direct transmission loss measurements, and by analyzing the behavior of an integrated fiber Bragg grating. The inscribed grating should reveal whether the refractive index of the composite film experiences changes upon exposure to hydrogen. In addition, with frequency domain reflectometry the distributed sensing potential of the developed sensor for hydrogen concentrations of up to 10% is examined. The results show the possibility of detecting chemical gradients with sub-cm resolution at temperatures greater than 500 °C.

2.
Adv Mater ; 28(16): 3111-4, 2016 04.
Article in English | MEDLINE | ID: mdl-26901747

ABSTRACT

A new spectroscopic technique is presented, with which environmentalchemistry-induced thermal emissivity changes of thin films are extracted with high isolation through evanescent tunneling. With this method the hydrogen-induced emissivity changes of films of TiO2 , Pd-TiO2 , and Au-TiO2 , with properties of high conductivity, hydrogen chemisorption, and plasmonic activity, are characterized in the UV-vis and NIR wavelength ranges, at 1073 K.

3.
Opt Express ; 22(3): 2665-74, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24663558

ABSTRACT

This paper presents an effective integration scheme of nanostructured SnO2 with the fiber optic platform for chemical sensing applications based on evanescent optical interactions. By using a triblock copolymer as a structure directing agent as the means of nano-structuring, the refractive index of SnO2 is reduced from >2.0 to 1.46, in accordance with effective medium theory for optimal on-fiber integration. High-temperature stable fiber Bragg gratings inscribed in D-shaped fibers were used to perform real-time characterization of optical absorption and refractive index modulation of metal oxides in response to NH3 from the room temperature to 500 °C. Measurement results reveals that the redox reaction of the nanostructured metal oxides exposed to a reactive gas NH3 induces much stronger changes in optical absorption as opposed to changes in the refractive index. Results presented in this paper provide important guidance for fiber optic chemical sensing designs based on metal oxide nanomaterials.


Subject(s)
Fiber Optic Technology/instrumentation , Gases/analysis , Lenses , Metal Nanoparticles/chemistry , Refractometry/instrumentation , Tin Compounds/chemistry , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...