Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210298, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-35965466

ABSTRACT

Well parameterized epidemiological models including accurate representation of contacts are fundamental to controlling epidemics. However, age-stratified contacts are typically estimated from pre-pandemic/peace-time surveys, even though interventions and public response likely alter contacts. Here, we fit age-stratified models, including re-estimation of relative contact rates between age classes, to public data describing the 2020-2021 COVID-19 outbreak in England. This data includes age-stratified population size, cases, deaths, hospital admissions and results from the Coronavirus Infection Survey (almost 9000 observations in all). Fitting stochastic compartmental models to such detailed data is extremely challenging, especially considering the large number of model parameters being estimated (over 150). An efficient new inference algorithm ABC-MBP combining existing approximate Bayesian computation (ABC) methodology with model-based proposals (MBPs) is applied. Modified contact rates are inferred alongside time-varying reproduction numbers that quantify changes in overall transmission due to pandemic response, and age-stratified proportions of asymptomatic cases, hospitalization rates and deaths. These inferences are robust to a range of assumptions including the values of parameters that cannot be estimated from available data. ABC-MBP is shown to enable reliable joint analysis of complex epidemiological data yielding consistent parametrization of dynamic transmission models that can inform data-driven public health policy and interventions. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Subject(s)
COVID-19 , Algorithms , Bayes Theorem , COVID-19/epidemiology , Disease Outbreaks , Humans , Pandemics
2.
J R Soc Interface ; 19(188): 20220013, 2022 03.
Article in English | MEDLINE | ID: mdl-35259955

ABSTRACT

Pathogens such as African swine fever virus (ASFV) are an increasing threat to global livestock production with implications for economic well-being and food security. Quantification of epidemiological parameters, such as transmission rates and latent and infectious periods, is critical to inform efficient disease control. Parameter estimation for livestock disease systems is often reliant upon transmission experiments, which provide valuable insights in the epidemiology of disease but which may also be unrepresentative of at-risk populations and incur economic and animal welfare costs. Routinely collected mortality data are a potential source of readily available and representative information regarding disease transmission early in outbreaks. We develop methodology to conduct exact Bayesian parameter inference from mortality data using reversible jump Markov chain Monte Carlo incorporating multiple routes of transmission (e.g. within-farm secondary and background transmission from external sources). We use this methodology to infer epidemiological parameters for ASFV using data from outbreaks on nine farms in the Russian Federation. This approach improves inference on transmission rates in comparison with previous methods based on approximate Bayesian computation, allows better estimation of time of introduction and could readily be applied to other outbreaks or pathogens.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , African Swine Fever/epidemiology , Animals , Bayes Theorem , Disease Outbreaks/veterinary , Swine , Swine Diseases/epidemiology
3.
PLoS Comput Biol ; 16(12): e1008447, 2020 12.
Article in English | MEDLINE | ID: mdl-33347459

ABSTRACT

Individuals differ widely in their contribution to the spread of infection within and across populations. Three key epidemiological host traits affect infectious disease spread: susceptibility (propensity to acquire infection), infectivity (propensity to transmit infection to others) and recoverability (propensity to recover quickly). Interventions aiming to reduce disease spread may target improvement in any one of these traits, but the necessary statistical methods for obtaining risk estimates are lacking. In this paper we introduce a novel software tool called SIRE (standing for "Susceptibility, Infectivity and Recoverability Estimation"), which allows for the first time simultaneous estimation of the genetic effect of a single nucleotide polymorphism (SNP), as well as non-genetic influences on these three unobservable host traits. SIRE implements a flexible Bayesian algorithm which accommodates a wide range of disease surveillance data comprising any combination of recorded individual infection and/or recovery times, or disease diagnostic test results. Different genetic and non-genetic regulations and data scenarios (representing realistic recording schemes) were simulated to validate SIRE and to assess their impact on the precision, accuracy and bias of parameter estimates. This analysis revealed that with few exceptions, SIRE provides unbiased, accurate parameter estimates associated with all three host traits. For most scenarios, SNP effects associated with recoverability can be estimated with highest precision, followed by susceptibility. For infectivity, many epidemics with few individuals give substantially more statistical power to identify SNP effects than the reverse. Importantly, precise estimates of SNP and other effects could be obtained even in the case of incomplete, censored and relatively infrequent measurements of individuals' infection or survival status, albeit requiring more individuals to yield equivalent precision. SIRE represents a new tool for analysing a wide range of experimental and field disease data with the aim of discovering and validating SNPs and other factors controlling infectious disease transmission.


Subject(s)
Communicable Diseases/genetics , Communicable Diseases/transmission , Epidemics , Algorithms , Bayes Theorem , Communicable Diseases/epidemiology , Humans , Models, Statistical , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...