Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Gerontol ; 110: 158-171, 2018 09.
Article in English | MEDLINE | ID: mdl-29902502

ABSTRACT

Holothuria scabra is a sea cucumber that is mostly found in the Indo-Pacific region including Thailand. Extracts from many sea cucumbers possess pharmacological activities proposed to benefit human health. In this study, we investigated the anti-oxidant and anti-ageing activities of extracts from H. scabra by using Caenorhabditis elegans as a model organism. Parts of H. scabra were solvent-extracted and divided into nine fractions including whole body-hexane (WBHE), whole body-ethyl acetate (WBEA), whole body-butanol (WBBU), body wall-hexane (BWHE), body wall-ethyl acetate (BWEA), body wall-butanol (BWBU), viscera-hexane (VIHE), viscera-ethyl acetate (VIEA), and viscera-butanol (VIBU). All fractions of the extracts were tested for anti-oxidant activities by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays and for anti-ageing effects by lifespan assays using C. elegans as a model. The results showed anti-oxidant properties in all fractions with the highest activity shown by the DPPH assay in WBBU (EC50 = 3.12 ±â€¯0.09 mg/ml), and by the ABTS assay in WBHE (EC50 = 0.31 ±â€¯0.10 mg/ml). In lifespan assays the highest anti-ageing effect was detected in WBBU- and BWEA-treated C. elegans with increased mean lifespans of 8.12% and 4.77%, respectively. Furthermore, WBBU and BWEA-treated C. elegans exhibited significantly higher resistance against heat shock and paraquat-induced oxidative stresses than controls. By using LC-MS/MS, both extracts were characterized to contain triterpene glycosides as the main bioactive components. To explore mechanisms of H. scabra extracts on longevity and stress resistance, worms with genetic mutations in anti-ageing pathways were analyzed and showed that WBBU and BWEA did not prolong the lifespan of daf-16, age-1, sir-2.1, jnk-1, sek-1, and osr-1 mutants, suggesting that these genetic pathways are involved in mediating the anti-ageing effects of the H. scabra extracts. Moreover, WBBU and BWEA enhanced the nuclear translocation of the FoxO/DAF-16 transcription factor, and increased mRNA expression of this gene and its downstream targets sod-3, hsp12.3, and hsp16.2. In conclusion, this study strongly demonstrates anti-oxidant and anti-ageing properties of H. scabra extracts containing triterpene glycosides, which, in the C. elegans model, may be mediated via the insulin/IGF-1 signaling (IIS)-DAF-16 pathway.


Subject(s)
Antioxidants/pharmacology , Biological Products/pharmacology , Caenorhabditis elegans/drug effects , Holothuria/chemistry , Longevity/drug effects , Animals , Chromatography, Liquid , Oxidative Stress , Signal Transduction , Tandem Mass Spectrometry
2.
Nutr Neurosci ; 21(6): 427-438, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28276260

ABSTRACT

OBJECTIVES: Parkinson's disease (PD) is associated with aggregation of α-synuclein and selective death of dopaminergic (DA) neurons in the substantia nigra, thereby leading to cognitive and motor impairments. Nowadays, the drugs commonly used for PD treatment, such as levodopa, provide only symptomatic relief. Therefore, seeking new drugs against PD, especially from plants and marine organisms, is one of the major research areas to be explored. This study aimed to investigate the anti-Parkinson activity of the extracts from the sea cucumber, Holothuria scabra, by using Caenorhabditis elegans as a model. METHODS: H. scabra was solvent-extracted and subdivided into six fractions including whole body-ethyl acetate (WBEA), body wall-ethyl acetate (BWEA), viscera-ethyl acetate (VIEA), whole body-butanol (WBBU), body wall-butanol (BWBU), and viscera-butanol (VIBU). The extracts were tested in C. elegans BZ555 strain expressing the green fluorescent protein (GFP) specifically in the DA neurons and NL5901 strain expressing human α-synuclein in the muscle cells. RESULTS: WBEA, BWEA, and WBBU fractions of H. scabra extracts at 500 µg/ml significantly attenuated DA neuron-degeneration induced by selective cathecholamine neurotoxin 6-hydroxydopamine (6-OHDA) in the BZ555 strain. Moreover, the extracts also reduced α-synuclein aggregation and restored lipid content in NL5901, as well as improved food-sensing behavior and prolonged lifespan in the 6-OHDA-treated wild-type strain. DISCUSSION: The study indicated that the H. scabra extracts have anti-Parkinson potential in the C. elegans model. These findings encourage further investigations on using the H. scabra extract, as well as its active constituent compounds, as a possible preventive and/or therapeutic intervention against PD.


Subject(s)
Antiparkinson Agents/pharmacology , Biological Products/pharmacology , Caenorhabditis elegans/drug effects , Holothuria/chemistry , Parkinson Disease/drug therapy , Animals , Caenorhabditis elegans/metabolism , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Nerve Degeneration/chemically induced , Nerve Degeneration/drug therapy , Neuroprotective Agents/pharmacology , Oxidopamine/toxicity , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...